Skip to main content

Advertisement

Log in

Brainpeps: the blood–brain barrier peptide database

  • Review
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Peptides are able to cross the blood–brain barrier (BBB) through various mechanisms, opening new diagnostic and therapeutic avenues. However, their BBB transport data are scattered in the literature over different disciplines, using different methodologies reporting different influx or efflux aspects. Therefore, a comprehensive BBB peptide database (Brainpeps) was constructed to collect the BBB data available in the literature. Brainpeps currently contains BBB transport information with positive as well as negative results. The database is a useful tool to prioritize peptide choices for evaluating different BBB responses or studying quantitative structure–property (BBB behaviour) relationships of peptides. Because a multitude of methods have been used to assess the BBB behaviour of compounds, we classified these methods and their responses. Moreover, the relationships between the different BBB transport methods have been clarified and visualized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

%ID:

Percentage injected dose

γ :

Surface tension

γ 0 :

Surface tension in pure buffer solution

ε :

Dielectric constant

λ :

Terminal rate constant

π :

Surface pressure

Г:

Surface excess concentration

Г :

Limited surface excess concentration

A :

Area of the filter, membrane surface area, capillary surface area

ABC transporter:

ATP-binding cassette transporter

A D :

Surface area of the test compound at the air–water interface

A m :

Amount of test compound in brain

A s :

Cross-sectional area; surface area

ATP:

Adenosine triphosphate

AUC:

Area under the concentration curve

AUCbrain :

Area under the concentration curve in brain

AUCplasma :

Area under the concentration curve in plasma

BB:

Brain-to-plasma concentration ratio at steady-state, blood–brain equilibrium distribution

BBB:

Blood–brain barrier

BBB-PI:

Blood–brain barrier permeability index

BCRP:

Breast cancer resistance protein

BCSFB:

Blood–cerebrospinal fluid barrier

BEI:

Brain efflux index

BMEC:

Brain microvessel endothelial cells

B/P :

Brain-to-plasma concentration ratio at steady-state, blood–brain equilibrium distribution

Brainpeps:

Blood–brain barrier peptide database

BSA:

Bovine serum albumin

BUI:

Brain uptake index

BW:

Body weight

C :

Concentration of test compound

C 0 :

Initial concentration in donor chamber; minimum concentration to induce surface activity

C a, C A, C acc :

Apical (luminal) side concentration, i.e. in the acceptor chamber

Caco-2:

Human colon carcinoma cell line

Calcein-AM:

Calcein acetoxymethyl ester

CBF:

Cerebral blood flow

C br, C brain :

Brain concentration

C br,tot, C br (total):

Total brain concentration

C buffer :

Concentration in buffer

C CSF :

Concentration in the CSF

CD:

Compartmental distribution

C donor, C d, C D, C DO, C I :

Initial concentration of test compound in donor chamber

C dial :

Concentration of the dialysate

C ECF :

Concentration of test compound in brain ECF

C in :

Concentration of the perfusate; concentration in the carotid injection solution

C iv :

Concentration of intravascular marker

Cl:

Clearance

Cleff :

Efflux clearance

ClH :

Hepatic clearance

Clinf :

Uptake clearance

Clp :

Systemic clearance

ClR :

Renal clearance

ClS :

Systemic clearance

Cltest :

Clearance of the test experiment

Clup :

Initial uptake clearance

CMC:

Critical micelle concentration

CNS:

Central nervous system

CNS :

Low brain penetrator

CNS+ :

High brain penetrator

Conc(test/ref)brain :

Concentration ratio of test and reference compound in brain

Conc(test/ref)injectate :

Concentration ratio of test and reference compound in injection solution

C org :

Concentration test compound in organic phase

C out, C dial :

Concentration of the dialysate

C p (t):

Plasma concentration at time t

C pa :

Arterial plasma concentration

C perfusion, C perf :

Concentration in the perfusion solution

C pl :

Plasma concentration

C pl,tot :

Total plasma concentration

C ref :

Concentration of the reference compound

C ref,brain :

Concentration of the reference compound in the brain

C ref,inj :

Concentration of the reference compound in the injected solutions

C s :

Concentration of the sample

C sat :

Saturated concentration at which the surface pressure collapses

CSF:

Cerebrospinal fluid

C slice :

Free drug concentration in tissue slice

C test :

Concentration of the test compound

C test,brain :

Concentration of the test compound in the brain

C test,inj :

Concentration of the test compound in the injected solutions

C tissue :

Tissue concentration of the indicator

C tot :

Total concentration

C u :

Unbound concentration

C u,brain :

Unbound concentration in brain

C u,plasma :

Unbound concentration in plasma

C wat :

Concentration test compound in aqueous phase

C wat,ion :

Concentration of ionic species of test compound in aqueous phase

C wat,neut :

Concentration of neutral species of test compound in aqueous phase

D :

Distribution coefficient; dilution factor

dQ/dt :

Transport rate of test compound

E :

Extraction of the test compound

ECF:

Extracellular fluid

ED50 :

Dose producing 50% of the maximum response

EDTA:

Ethylenediaminetetraacetic acid

ER:

Efflux ratio; entity-relationship

E ref :

Single pass extraction of the reference compound

E refp :

Extraction of the permeable marker

E refv :

Extraction of the vascular impermeable marker

E test :

Single pass extraction of the test compound

Exp.t :

Exposure time

F :

Regional flow rate

f :

Fraction of plasma exchangeable compound

FK:

Foreign key

f u :

Unbound fraction

f u,brain :

Unbound fraction in brain

f u,dil :

Diluted unbound fraction

f u,meas :

Free fraction measured

f u,plasma :

Unbound fraction in plasma

GFR:

Glomerular filtration rate

GLUT-1:

Glucose transporter 1

hAAG:

Human α1 acid glycoprotein

HPLC:

High-performance liquid chromatography

IAM:

Immobilized artificial membrane

IUPAC:

International Union of Pure and Applied Chemistry

J :

Brain uptake rate

J max :

Maximal flux

K aw :

Air–water partition coefficient

K d :

Dissociation constant

k eff :

Apparent efflux rate constant

k el :

Plasma elimination rate constant

k el :

Efflux rate constant

k i :

Unidirectional influx rate constant determined with imaging techniques

k IAM :

IAM capacity factor

K in :

Unidirectional influx rate constant

K m :

Michaelis–Menten constant

k out :

Brain elimination rate constant

K p :

Brain-to-plasma partition coefficient

K p,app :

Apparent brain-to-plasma partition coefficient

K p,brain :

Brain-to-plasma concentration ratio

K p,in :

Intrinsic plasma-to-brain partition coefficient

K p,uu :

Brain-to-plasma partition coefficient of the free compound concentration

LAT-1:

Large neutral amino acid transporter-1

Log P cyclohexane/water :

Log P value of the cyclohexane/water system

Log P oct/water :

Log P value of the 1-octanol/water system

MBUA:

Mouse brain uptake assay

MCT:

Monocarboxylic transporters

MDCK:

Madin–Darby canine kidney cells

MDR-1:

Multidrug resistance gene

MID:

Method identification

MRI:

Magnetic resonance imaging

MRP-1:

Multidrug resistance associated protein-1

N A :

Avogadro constant

N serum :

Radioactivity measured per volume serum

N tissue :

Radioactivity measured per gram tissue

OID:

Origin identification

P :

Partition coefficient; permeability coefficient

PAMPA:

Parallel artificial membrane permeation assay

P app :

Apparent permeability coefficient, determined with BMEC, co-culture, immortalized cell lines, Caco-2, MDCK and MBUA

P app (AB):

Apparent permeability coefficient from apical to basolateral side

P app (B–A):

Apparent permeability coefficient from basolateral to apical side

P app,pampa :

Apparent permeability coefficient, determined with PAMPA

Par-2:

Brain parietal cortex area 2

PBID:

Publication identification

P c :

Intrinsic carrier-mediated permeability

\( P_{\text{c}}^{\prime } \) :

Apparent net carrier-mediated permeability

P e :

Endothelial permeability, effective PAMPA permeability

P eff :

Effective PAMPA permeability

P endoth :

Endothelial permeability coefficient, determined with BMEC culture

PEPT1:

Peptide transporter 1

PET:

Positron emission tomography

P filter :

Permeability of the filter

Pgp:

P-glycoprotein

PI:

Permeability index

PID:

Peptide IDentification

P m :

Monolayer permeability determined with BMEC

P p :

Passive diffusive permeability

PR:

Peak response

PS :

Permeability–surface area coefficient

PS e :

PS product for the endothelial cell monolayer

PS f :

PS product of the control filter

PS t :

Total PS product

P total :

Total permeability

Q :

Cerebral blood flow

\( \dot{Q} \) :

Rate of blood flow

QAR:

Quantitative autoradiography

R :

Gas constant; recovery

Rateeff :

In vitro efflux rate

RBE4:

Immortalized primary rat brain endothelial cells

R dial :

Recovery by gain

RID:

Response identification

RL:

Recovery by loss, retrodialysis

RP-HPLC:

Reversed-phase HPLC

RR:

Relative recovery

S :

Capillary surface area

SMILES:

Simplified molecular input line entry specification

SPECT:

Single photon emission tomography

SV40:

Simian vacuolating virus 40

T :

Temperature; perfusion time

t :

Time

t 0 :

Dead time

t 1/2 :

(Terminal) half-life

t 1/2eq :

Equilibration half-life

t 1/2eq,in :

Intrinsic equilibration half-life

T :

Perfusion time

TEER:

Transendothelial electrical resistance

TM-BBB:

Transfected mouse endothelial cells

t r :

Retention time of test compound

TR-BBB:

Transfected rat endothelial cells

UML:

Unified modelling language

V 0 :

Initial distribution volume; plasma distribution volume of marker

V acc, V A :

Volume of the acceptor compartment

V br, V b :

Distribution volume in brain

V D :

Volume of donor compartment; distribution volume in brain

V e :

Volume fraction of brain

V i :

Initial distribution volume; Volume of buffer film remaining around sample slice

V max :

Maximum uptake rate

V p :

Plasma distribution volume

V R :

Volume of acceptor compartment

V u,br :

Unbound brain distribution volume

V v :

Brain vascular volume

X :

Amount of test compound in acceptor compartment

References

  • Alavijeh MS, Chishty M, Qaiser MZ, Palmer AM (2005) Drug metabolism and pharmacokinetics, the blood–brain barrier, and central nervous system drug discovery. NeuroRx 2:554–571

    Article  PubMed  Google Scholar 

  • Albensi BC, Knoblach SM, Chew BGM, O’Reilly MP, Faden AI, Pekar JJ (2000) Diffusion and high resolution MRI of traumatic brain injury in rats: time course and correlation with histology. Exp Neurol 162:61–72

    Article  PubMed  CAS  Google Scholar 

  • Audus KL, Rose JM, Wang W, Borchardt RT (1999) Brain microvessel endothelial cell culture systems. In: Pardridge WM (ed) Introduction to the blood–brain barrier: methodology, biology and pathology. Cambridge University Press, Cambridge, pp 86–93

    Google Scholar 

  • Banks WA (2008) Delivery of peptides to the brain: emphasis on therapeutic development. Biopolymers 90:589–594

    Article  PubMed  CAS  Google Scholar 

  • Banks WA, Kastin AJ (1985) Peptides and the blood–brain-barrier—lipophilicity as a predictor of permeability. Brain Res Bull 15:287–292

    Article  PubMed  CAS  Google Scholar 

  • Banks WA, Kastin AJ (1990) Peptide-transport systems for opiates across the blood–brain-barrier. Am J Physiol 259:E1–E10

    PubMed  CAS  Google Scholar 

  • Banks WA, Kastin AJ (1996) Passage of peptides across the blood–brain barrier: pathophysiological perspectives. Life Sci 59:1923–1943

    Article  PubMed  CAS  Google Scholar 

  • Banks WA, Kastin AJ, Coy DH (1984) Evidence that [125I]N-Tyr-delta sleep-inducing peptide crosses the blood–brain barrier by a non-competitive mechanism. Brain Res 301:201–207

    Article  PubMed  CAS  Google Scholar 

  • Banks WA, Kastin AJ, Conn PM (1989) Quantifying carrier-mediated transport of peptides from the brain to the blood. Method Enzymol 168:652–660

    Article  CAS  Google Scholar 

  • Banks WA, Tschop M, Robinson SM, Heiman ML (2002) Extent and direction of ghrelin transport across the blood–brain barrier is determined by its unique primary structure. J Pharmacol Exp Ther 302:822–827

    Article  PubMed  CAS  Google Scholar 

  • Becker S, Liu XR (2006) Evaluation of the utility of brain slice methods to study brain penetration. Drug Metab Dispos 34:855–861

    Article  PubMed  CAS  Google Scholar 

  • Beekman FJ, Vastenhouw B (2004) Design and simulation of a high-resolution stationary SPECT system for small animals. Phys Med Biol 49:4579–4592

    Article  PubMed  Google Scholar 

  • Begley DJ (1999) In situ brain perfusion. In: Pardridge WM (ed) Introduction to the blood–brain barrier: methodology, biology and pathology. Cambridge University Press, Cambridge, pp 32–40

    Google Scholar 

  • Berezhkovskiy LM (2008) Some features of the kinetics and equilibrium of drug binding to plasma proteins. Expert Opin Drug Metab Toxicol 4:1479–1498

    Article  PubMed  CAS  Google Scholar 

  • Bickel U (1999) Intravenous injection/pharmacokinetics. In: Pardridge WM (ed) Introduction to the blood–brain barrier: methodology, biology and pathology. Cambridge University Press, Cambridge, pp 41–48

    Google Scholar 

  • Bickel U (2005) How to measure drug transport across the blood–brain barrier. NeuroRx 2:15–26

    Article  PubMed  Google Scholar 

  • Bickel U, Yoshikawa T, Pardridge WM (2001) Delivery of peptides and proteins through the blood–brain barrier. Adv Drug Deliv Rev 46:247–279

    Article  PubMed  CAS  Google Scholar 

  • Bonate PL (1995) Animal-models for studying transport across the blood–brain-barrier. J Neurosci Methods 56:1–15

    Article  PubMed  CAS  Google Scholar 

  • Booch G, Rumbaugh J, Jacobson I (1999) The unified modelling language user guide. Addison-Wesley, Reading

    Google Scholar 

  • Brandsch M, Knutter I, Bosse-Doenecke E (2008) Pharmaceutical and pharmacological importance of peptide transporters. J Pharm Pharmacol 60:543–585

    Article  PubMed  CAS  Google Scholar 

  • Brasnjevic I, Steinbusch HWM, Schmitz C, Martinez-Martinez P, European NanoBioPharmaceutics R (2009) Delivery of peptide and protein drugs over the blood-brain barrier. Prog Neurobiol 87:212–251

    Article  PubMed  CAS  Google Scholar 

  • Caboche S, Pupin M, Leclere V, Fontaine A, Jacques P, Kucherov G (2008) NORINE: a database of nonribosomal peptides. Nucleic Acids Res 36:D326–D331

    Article  PubMed  CAS  Google Scholar 

  • Campbell M, Humphries MM, Kiang AS, Nguyen ATH, Gobbo OL, Tam LCS et al (2011) Systemic low-molecular weight drug delivery to pre-selected neuronal regions. EMBO Mol Med 3:235–245

    Article  PubMed  CAS  Google Scholar 

  • Carrara S, Reali V, Misiano P, Dondio G, Bigogno C (2007) Evaluation of in vitro brain penetration: optimized PAMPA and MDCKII-MDR1 assay comparison. Int J Pharm 345:125–133

    Article  PubMed  CAS  Google Scholar 

  • Cecchelli R, Dehouck B, Descamps L, Fenart L, Buée-Scherrer V, Duhem C et al (1999) In vitro model for evaluating drug transport across the blood–brain barrier. Adv Drug Deliv Rev 36:165–178

    Article  PubMed  CAS  Google Scholar 

  • Cecchelli R, Coisne C, Dehouck L, Miller F, Dehouck M, Buée-Scherrer V, Dehouck B (2006) Modeling the blood–brain barrier. In: Dermietzel R, Spray DC, Nedergaard M (eds) Blood–brain barriers. Wiley, Weinheim, pp 337–355

    Google Scholar 

  • Cecchelli R, Berezowski V, Lundquist S, Culot M, Renftel M, Dehouck MP et al (2007) Modelling of the blood–brain barrier in drug discovery and development. Nat Rev Drug Discov 6:650–661

    Article  PubMed  CAS  Google Scholar 

  • Chaurasia CS, Muller M, Bashaw ED, Benfeldt E, Bolinder J, Bullock R et al (2007) Microdialysis principles, application, and regulatory perspectives report from the joint AAPS-FDA workshop. AAPS J 9:E48–E59

    Article  Google Scholar 

  • Chen P (1976) The entity-relationship model—toward a unified view of data. ACM T Database Syst 1:9–36

    Article  Google Scholar 

  • Chen WQ, Yang JZ, Andersen R, Nielsen LH, Borchardt RT (2002) Evaluation of the permeation characteristics of a model opioid peptide, H-Tyr-D-Ala-Gly-Phe-D-Leu-OH (DADLE), and its cyclic Prodrugs across the blood–brain barrier using an in situ perfused rat brain model. J Pharmacol Exp Ther 303:849–857

    Article  PubMed  CAS  Google Scholar 

  • Chu TC, Twu KY, Ellington AD, Levy M (2006) Aptamer mediated siRNA delivery. Nucleic Acids Res 34:6

    Article  CAS  Google Scholar 

  • Codd E (1970) A relational model of data for large shared data banks. Commun ACM 13:377–378

    Article  Google Scholar 

  • Cornford EM (1985) The blood–brain-barrier, a dynamic regulatory interface. Mol Physiol 7:219–260

    CAS  Google Scholar 

  • Cornford EM (1999) The carotid artery single injection technique. In: Pardridge WM (ed) Introduction to the blood–brain barrier: methodology, biology and pathology. Cambridge University Press, Cambridge, pp 11–23

    Google Scholar 

  • Crone C (1965) Facilitated transfer of glucose from blood into brain tissue. J Physiol (Lond) 181:103–113

    CAS  Google Scholar 

  • Cucullot L, Oby E, Hallene K, Aumayr B, Rapp E, Janigro D (2006) Artificial blood–brain barriers. In: Dermietzel R, Spray DC, Nedergaard M (eds) Blood–brain barriers: from ontogeny to artificial interfaces. Wiley, Weinheim, pp 375–401

    Google Scholar 

  • Culot M, Lundquist S, Vanuxeem D, Nion S, Landry C, Delplace Y et al (2008) An in vitro blood–brain barrier model for high throughput (HTS) toxicological screening. Toxicol In Vitro 22:799–811

    Article  PubMed  CAS  Google Scholar 

  • Dagenais C, Rousselle C, Pollack GM, Scherrmann JM (2000) Development of an in situ mouse brain perfusion model and its application to mdr1a P-glycoprotein-deficient mice. J Cerebr Blood Flow Metab 20:381–386

    CAS  Google Scholar 

  • Dagenais C, Avdeef A, Tsinman O, Dudley A, Beliveau R (2009) P-glycoprotein deficient mouse in situ blood–brain barrier permeability and its prediction using an in combo PAMPA model. Eur J Pharm Sci 38:121–137

    Article  PubMed  CAS  Google Scholar 

  • Dai H, Elmquist WF (2003) Drug transport studies using quantitative microdialysis. In: Nag S (ed) The blood–brain barrier: biology and research protocols. Humana, Totowa, pp 249–264

    Google Scholar 

  • Dash AK, Elmquist WF (2003) Separation methods that are capable of revealing blood–brain barrier permeability. J Chromatogr B 797:241–254

    Article  CAS  Google Scholar 

  • Davies MI, Cooper JD, Desmond SS, Lunte CE, Lunte SM (2000) Analytical considerations for microdialysis sampling. Adv Drug Deliv Rev 45:169–188

    Article  PubMed  CAS  Google Scholar 

  • de Boer AG, Breimer DD (1996) Reconstitution of the blood–brain barrier in cell culture for studies of drug transport and metabolism. Adv Drug Deliv Rev 22:251–264

    Article  Google Scholar 

  • de Lange ECM, de Boer AG, Breimer DD (1999) Intracerebral microdialysis. In: Pardridge WM (ed) Introduction to the blood–brain barrier: methodology, biology and pathology. Cambridge University Press, Cambridge, pp 94–112

    Google Scholar 

  • Deguchi Y, Miyakawa Y, Sakurada S, Naito Y, Morimoto K, Ohtsuki S et al (2003) Blood–brain barrier transport of a novel mu(1)-specific opioid peptide, H-Tyr-D-Arg-Phe-beta-Ala-OH (TAPA). J Neurochem 84:1154–1161

    Article  PubMed  CAS  Google Scholar 

  • Deguchi Y, Naito Y, Ohtsuki S, Miyakawa Y, Morimoto K, Hosoya K et al (2004) Blood–brain barrier permeability of novel [D-Arg2]dermorphin (1-4) analogs: transport property is related to the slow onset of antinociceptive activity in the central nervous system. J Pharmacol Exp Ther 310:177–184

    Article  PubMed  CAS  Google Scholar 

  • Deli MA, Abraham CS, Kataoka Y, Niwa M (2005) Permeability studies on in vitro blood–brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol 25:59–127

    Article  PubMed  Google Scholar 

  • Di L, Kerns EH, Fan K, McConnell OJ, Carter GT (2003) High throughput artificial membrane permeability assay for blood–brain barrier. Eur J Med Chem 38:223–232

    Article  PubMed  CAS  Google Scholar 

  • Di L, Umland JP, Chang G, Huang Y, Lin Z, Scott DOS, Troutman MD, Liston TE (2011) Species independence in brain tissue binding using brain homogenates. Drug Metab Dispos 39:1270–1277

    Article  PubMed  CAS  Google Scholar 

  • Dienel GA (2006) Functional brain imaging. In: Dermietzel R, Spray DC, Nedergaard M (eds) Blood–brain barriers: from ontogeny to artificial interfaces. Wiley, Weinheim, pp 551–599

    Google Scholar 

  • Dogrukol-Ak D, Banks WA, Tuncel N, Tuncel M (2003) Passage of vasoactive intestinal peptide across the blood–brain barrier. Peptides 24:437–444

    Article  PubMed  CAS  Google Scholar 

  • Ducarme A, Neuwels M, Goldstein S, Massingham R (1998) IAM retention and blood brain barrier penetration. Eur J Med Chem 33:215–223

    Article  CAS  Google Scholar 

  • Ecker GF, Noe CR (2004) In silico prediction models for blood–brain barrier permeation. Curr Med Chem 11:1617–1628

    PubMed  CAS  Google Scholar 

  • Eddy EP, Maleef BE, Hart TK, Smith PL (1997) In vitro models to predict blood–brain barrier permeability. Adv Drug Deliv Rev 23:185–198

    Article  CAS  Google Scholar 

  • Egleton RD, Davis TP (1999) Transport of the delta-opioid receptor agonist [d-penicillamine(2,5)] enkephalin across the blood–brain barrier involves transcytosis. J Pharm Sci 88:392–397

    Article  PubMed  CAS  Google Scholar 

  • Egleton RD, Mitchell SA, Huber JD, Palian MM, Polt R, Davis TP (2001) Improved blood–brain barrier penetration and enhanced analgesia of an opioid peptide by glycosylation. J Pharmacol Exp Ther 299:967–972

    PubMed  CAS  Google Scholar 

  • Ehrlich P (1885) Das sauerstufbudurfnis des organismus. Eine Farbenanalytische Studie. Verlag von August Hirschwald, Berlin

    Google Scholar 

  • Engelhardt B (2006) Development of the blood–brain interface. In: Dermietzel R, Spray DC, Nedergaard M (eds) Blood–brain barrier: from ontogeny to artificial interfaces. Wiley VCH, Weinheim, pp 11–39

    Google Scholar 

  • Ermisch A (1992) Peptide receptors of the blood–brain-barrier and substrate transport into the brain. In: Ermisch A, Landgraf R, Ruhle HJ (eds) Circumventricular organs and brain fluid environment: molecular and functional aspects. Elsevier, Amsterdam, pp 155–161

    Chapter  Google Scholar 

  • Ermisch A, Ruhle HJ, Landgraf R, Hess J (1985) Blood–brain barrier and peptides. J Cerebr Blood Flow Metab 5:350–357

    Article  CAS  Google Scholar 

  • Ermisch A, Ruhle HJ, Kretzschmar R, Baethmann A (1991) On the blood–brain-barrier to peptides—specific binding of atrial-natriuretic-peptide in vivo and in vitro. Brain Res 554:209–216

    Article  PubMed  CAS  Google Scholar 

  • Ewing JR, Knight RA, Nagaraja TN, Yee JS, Nagesh V, Whitton PA et al (2003) Patlak plots of Gd-DTPA MRI data yield blood–brain transfer constants concordant with those of C-14-sucrose in areas of blood–brain opening. Magn Reson Med 50:283–292

    Article  PubMed  Google Scholar 

  • Feng B, Mills JB, Davidson RE, Mireles RJ, Janiszewski JS, Troutman MD et al (2008) In vitro P-glycoprotein assays to predict the in vivo interactions of P-glycoprotein with drugs in the central nervous system. Drug Metab Dispos 36:268–275

    Article  PubMed  CAS  Google Scholar 

  • Fenstermacher JD, Wei L (1999) Measuring local cerebral capillary permeability-surface area products by quantitative autoradiography. In: Pardridge WM (ed) Introduction to the blood–brain barrier: methodology, biology and pathology. Cambridge University Press, Cambridge, pp 122–132

    Google Scholar 

  • Fiori A, Cardelli P, Negri L, Savi MR, Strom R, Erspamer V (1997) Deltorphin transport across the blood–brain barrier. Proc Natl Acad Sci USA 94:9469–9474

    Article  PubMed  CAS  Google Scholar 

  • Fischer H, Gottschlich R, Seelig A (1998) Blood–brain barrier permeation: molecular parameters governing passive diffusion. J Membr Biol 165:201–211

    Article  PubMed  CAS  Google Scholar 

  • Franke H, Galla HJ, Beuckmann CT (2000) Primary cultures of brain microvessel endothelial cells: a valid and flexible model to study drug transport through the blood–brain barrier in vitro. Brain Res Protoc 5:248–256

    Article  CAS  Google Scholar 

  • Friden M, Gupta A, Antonsson M, Bredberg U, Hammarlund-Udenaes M (2007) In vitro methods for estimating unbound drug concentrations in the brain interstitial and intracellular fluids. Drug Metab Dispos 35:1711–1719

    Article  PubMed  CAS  Google Scholar 

  • Friden M, Ducrozet F, Middleton B, Antonsson M, Bredberg U, Hammarlund-Udenaes M (2009) Development of a high-throughput brain slice method for studying drug distribution in the central nervous system. Drug Metab Dispos 37:1226–1233

    Article  PubMed  CAS  Google Scholar 

  • Fujikawa M, Ano R, Nakao K, Shimizu R, Akamatsu M (2005) Relationships between structure and high-throughput screening permeability of diverse drugs with artificial membranes: application to prediction of Caco-2 cell permeability. Bioorg Med Chem 13:4721–4732

    Article  PubMed  CAS  Google Scholar 

  • Gaillard PJ, Voorwinden LH, Nielsen JL, Ivanov A, Atsumi R, Engman H et al (2001) Establishment and functional characterization of an in vitro model of the blood–brain barrier, comprising a co-culture of brain capillary endothelial cells and astrocytes. Eur J Pharm Sci 12:215–222

    Article  PubMed  CAS  Google Scholar 

  • Ganapathy V, Miyauchi S (2005) Transport systems for opioid peptides in mammalian tissues. AAPS J 7:E852–E856

    Article  PubMed  CAS  Google Scholar 

  • Garberg P, Ball M, Borg N, Cecchelli R, Fenart L, Hurst RD et al (2005) In vitro models for the blood–brain barrier. Toxicol In Vitro 19:299–334

    Article  PubMed  CAS  Google Scholar 

  • Gerebtzoff G, Seelig A (2006) In silico prediction of blood–brain barrier permeation using the calculated molecular cross-sectional area as main parameter. J Chem Inf Model 46:2638–2650

    Article  PubMed  CAS  Google Scholar 

  • Giaginis C, Tsantili-Kakoulidou A (2008) Alternative measures of lipophilicity: from octanol–water partitioning to IAM retention. J Pharm Sci 97:2984–3004

    Article  PubMed  CAS  Google Scholar 

  • Gjedde A (1981) High-affinity and low-affinity transport of d-glucose from blood to brain. J Neurochem 36:1463–1471

    Article  PubMed  CAS  Google Scholar 

  • Gjedde A, Christensen O (1984) Estimates of Michaelis–Menten constants for the 2 membranes of the brain endothelium. J Cerebr Blood Flow Metab 4:241–249

    Google Scholar 

  • Golden PL, Pollack GM (2003) Blood–brain barrier efflux transport. J Pharm Sci 92:1739–1753

    Article  PubMed  CAS  Google Scholar 

  • Goldmann EE (1913) Vitalfärbung am Zentralnervensystem. Abhandl Konigl preuss Akad Wiss 1:1–60

    Google Scholar 

  • Grant GA, Abbott NJ, Janigro D (1998) Understanding the physiology of the blood–brain barrier: in vitro models. News Physiol Sci 13:287–293

    PubMed  CAS  Google Scholar 

  • Gray RA, Vandervelde DG, Burke CJ, Manning MC, Middaugh CR, Borchardt RT (1994) Delta-sleep-inducing peptide—solution conformational studies of a membrane-permeable peptide. Biochemistry 33:1323–1331

    Article  PubMed  CAS  Google Scholar 

  • Gulya K, Krivan M, Nyolczas N, Sarnyai Z, Kovacs GL (1988) Central effects of the potent and highly selective-mu-opioid antagonist d-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) in mice. Eur J Pharmacol 150:355–360

    Article  PubMed  CAS  Google Scholar 

  • Gumbleton M, Audus KL (2001) Progress and limitations in the use of in vitro cell cultures to serve as a permeability screen for the blood–brain barrier. J Pharm Sci 90:1681–1698

    Article  PubMed  CAS  Google Scholar 

  • Gupta A, Chatelain P, Massingham R, Jonsson EN, Hammarlund-Udenaes M (2006) Brain distribution of cetirizine enantiomers: comparison of three different tissue-to-plasma partition coefficients: K-p, K-p, K-u, and K-p, K-uu. Drug Metab Dispos 34:318–323

    Article  PubMed  CAS  Google Scholar 

  • Hakkarainen JJ, Jalkanen AJ, Kaariainen TM, Keski-Rahkonen P, Venalainen T, Hokkanen J et al (2010) Comparison of in vitro cell models in predicting in vivo brain entry of drugs. Int J Pharm 402:27–36

    Article  PubMed  CAS  Google Scholar 

  • Hammami R, Ben Hamida J, Vergoten G, Fliss I (2009) PhytAMP: a database dedicated to antimicrobial plant peptides. Nucleic Acids Res 37:D963–D968

    Article  PubMed  CAS  Google Scholar 

  • Hammarlund-Udenaes M (2000) The use of microdialysis in CNS drug delivery studies—pharmacokinetic perspectives and results with analgesics and antiepileptics. Adv Drug Deliv Rev 45:283–294

    Article  PubMed  CAS  Google Scholar 

  • Hansen DK, Scott DO, Otis KW, Lunte SM (2002) Comparison of in vitro BBMEC permeability and in vivo CNS uptake by microdialysis sampling. J Pharm Biomed Anal 27:945–957

    Article  PubMed  CAS  Google Scholar 

  • Hawkins KN, Knapp RJ, Lui GK, Gulya K, Kazmierski W, Wan YP et al (1989) [H-3]-[H-D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2] ([H-3] CTOP), a potent and highly selective peptide for mu-opioid receptors in rat-brain. J Pharmacol Exp Ther 248:73–80

    PubMed  CAS  Google Scholar 

  • Hoffmann A, Bredno J, Wendland MF, Derugin N, Hom J, Schuster T et al (2011) Validation of in vivo magnetic resonance imaging blood–brain barrier permeability measurements by comparison with gold standard histology. Stroke 42:2054–2060

    Article  PubMed  Google Scholar 

  • Hosoya K-i, Ohtsuki S, Terasaki T (2002) Recent advances in the brain-to-blood efflux transport across the blood–brain barrier. Int J Pharm 248:15–29

    Article  PubMed  CAS  Google Scholar 

  • Hsuchou H, Pan W, Kastin AJ (2007) The fasting polypeptide FGF21 can enter brain from blood. Peptides 28:2382–2386

    Article  PubMed  CAS  Google Scholar 

  • Innis RB, Cunningham VJ, Delforge J, Fujita M, Giedde A, Gunn RN et al (2007) Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cerebr Blood Flow Metab 27:1533–1539

    Article  CAS  Google Scholar 

  • Isakovic AJ, Abbott NJ, Redzic ZB (2004) Brain to blood efflux transport of adenosine: blood–brain barrier studies in the rat. J Neurochem 90:272–286

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey P, Summerfield S (2010) Assessment of the blood–brain barrier in CNS drug discovery. Neurobiol Dis 37:33–37

    Article  PubMed  CAS  Google Scholar 

  • Joo F, Karnushi I (1973) Procedure for isolation of capillaries from rat-brain. Cytobios 8:41–48

    PubMed  CAS  Google Scholar 

  • Kakee A, Tersaki T, Sugiyama Y (1996) Brain efflux index as a novel method of analyzing efflux transport at the blood–brain barrier. J Pharmacol Exp Ther 277:1550–1559

    PubMed  CAS  Google Scholar 

  • Kalvass JC, Maurer TS (2002) Influence of nonspecific brain and plasma binding on CNS exposure: implications for rational drug discovery. Biopharm Drug Dispos 23:327–338

    Article  PubMed  CAS  Google Scholar 

  • Kansy M, Senner F, Gubernator K (1998) Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. J Med Chem 41:1007–1010

    Article  PubMed  CAS  Google Scholar 

  • Kastin AJ, Akerstrom V (1999) Nonsaturable entry of neuropeptide Y into brain. Am J Physiol Endocrinol Metab 276:E479–E482

    CAS  Google Scholar 

  • Kastin AJ, Akerstrom V (2003) Entry of exendin-4 into brain is rapid but may be limited at high doses. Int J Obes 27:313–318

    Article  CAS  Google Scholar 

  • Kastin AJ, Akerstrom V, Pan WH (2001) Validity of multiple-time regression analysis in measurement of tritiated and iodinated leptin crossing the blood–brain barrier: meaningful controls. Peptides 22:2127–2136

    Article  PubMed  CAS  Google Scholar 

  • Kastin AJ, Akerstrom V, Pan WH (2002) Interactions of glucagon-like peptide-1 (GLP-1) with the blood–brain barrier. J Mol Neurosci 18:7–14

    Article  PubMed  CAS  Google Scholar 

  • Kleczkowska P, Kosson P, Ballet S, Van den Eynde I, Tsuda Y, Tourwé D et al (2010) PK20, a new opioid–neurotensin hybrid peptide that exhibits central and peripheral antinociceptive effects. Mol Pain 6:86–92

    Article  PubMed  CAS  Google Scholar 

  • Knudsen GM, Paulson OB (1999) Measurement of blood–brain barrier in humans using indicator diffusion. In: Pardridge WM (ed) Introduction to the blood–brain barrier: methodology, biology and pathology. Cambridge University Press, Cambridge, pp 133–139

    Google Scholar 

  • Kretzschmar R, Landgraf R, Gjedde A, Ermisch A (1986) Vasopressin binds to microvessels from rat hippocampus. Brain Res 380:325–330

    Article  PubMed  CAS  Google Scholar 

  • Kumar G, Smith QR, Hokari M, Parepally J, Duncan MW (2007) Brain uptake, pharmacokinetics, and tissue distribution in the rat of neurotoxic N-butylbenzenesulfonamide. Toxicol Sci 97:253–264

    Article  PubMed  CAS  Google Scholar 

  • Kusuhara H, Terasaki T, Sugiyama Y (2003) Brain efflux index method. In: Nag S (ed) The blood–brain barrier: biology and research protocols. Humana, Totowa, pp 219–231

    Google Scholar 

  • Lanevskij K, Dapkunas J, Juska L, Japertas P, Didziapetris R (2010) QSAR Analysis of blood–brain distribution: the influence of plasma and brain tissue binding. J Pharm Sci 100:2147–2160

    Article  CAS  Google Scholar 

  • Lazaro E, Rafols CR, Roses M (2005) Characterization of immobilized artificial membrane (IAM) and XTerra columns by means of chromatographic models. J Chromatogr A 1081:163–173

    Article  PubMed  CAS  Google Scholar 

  • Levin VA (1980) Relationship of octanol–water partition-coefficient and molecular-weight to rat-brain capillary-permeability. J Med Chem 23:682–684

    Article  PubMed  CAS  Google Scholar 

  • Lin JH (1998) Applications and limitations of interspecies scaling and in vitro extrapolation in pharmacokinetics. Drug Metab Dispos 26:1202–1212

    PubMed  CAS  Google Scholar 

  • Liu XR, Tu MH, Kelly RS, Chen CP, Smith BJ (2004) Development of a computational approach to predict blood–brain barrier permeability. Drug Metab Dispos 32:132–139

    Article  PubMed  CAS  Google Scholar 

  • Liu XR, Smith BJ, Chen CP, Callegari E, Becker SL, Chen X et al (2005) Use of a physiologically based pharmacokinetic model to study the time to reach brain equilibrium: an experimental analysis of the role of blood–brain barrier permeability, plasma protein binding, and brain tissue binding. J Pharmacol Exp Ther 313:1254–1262

    Article  PubMed  CAS  Google Scholar 

  • Liu HM, Liu XF, Yao JL, Wang CL, Yu Y, Wang R (2006a) Utilization of combined chemical modifications to enhance the blood–brain barrier permeability and pharmacological activity of endomorphin-1. J Pharmacol Exp Ther 319:308–316

    Article  PubMed  CAS  Google Scholar 

  • Liu XR, Smith BJ, Chen C, Callegari E, Becker SL, Chen X et al (2006b) Evaluation of cerebrospinal fluid concentration and plasma free concentration as a surrogate measurement for brain free concentration. Drug Metab Dispos 34:1443–1447

    Article  PubMed  CAS  Google Scholar 

  • Liu XR, Chen CP, Smith BJ (2008) Progress in brain penetration evaluation in drug discovery and development. J Pharmacol Exp Ther 325:349–356

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Paliwal S, Bankiewicz KS, Bringas JR, Heart G, Mitragotri S et al (2010) Ultrasound-enhanced drug transport and distribution in the brain. AAPS PharmSciTech 11:1005–1017

    Article  PubMed  Google Scholar 

  • Logan J (2000) Graphical analysis of PET data applied to reversible and irreversible tracers. Nucl Med Biol 27:661–670

    Article  PubMed  CAS  Google Scholar 

  • Lundquist S, Renftel M (2002) The use of in vitro cell culture models for mechanistic studies and as permeability screens for the blood-brain barrier in the pharmaceutical industry—background and current status in the drug discovery process. Vascul Pharmacol 38:355–364

    Article  PubMed  CAS  Google Scholar 

  • Lundquist S, Renftel M, Brillault J, Fenart L, Cecchelli R, Dehouck MP (2002) Prediction of drug transport through the blood–brain barrier in vivo: a comparison between two in vitro cell models. Pharm Res 19:976–981

    Article  PubMed  CAS  Google Scholar 

  • Madgula VLM, Avula B, Reddy VLN, Khan KA, Khan SI (2007) Transport of decursin and decursinol angelate across Caco-2 and MDR-MDCK cell monolayers: in vitro models for intestinal and blood–brain barrier permeability. Planta Med 73:330–335

    Article  PubMed  CAS  Google Scholar 

  • Madsen SJ, Hirschberg H (2010) Site-specific opening of the blood–brain barrier. J Biophotonics 3:356–367

    Article  PubMed  Google Scholar 

  • Malina KCK, Cooper I, Teichberg VI (2009) Closing the gap between the in vivo and in vitro blood–brain barrier tightness. Brain Res 1284:12–21

    Article  CAS  Google Scholar 

  • Mano Y, Higuchi S, Kamimura H (2002) Investigation of the high partition of YM992, a novel antidepressant, in rat brain—in vitro and in vivo evidence for the high binding in brain and the high permeability at the BBB. Biopharm Drug Dispos 23:351–360

    Article  PubMed  CAS  Google Scholar 

  • Martin I (2004) Prediction of blood–brain barrier penetration: are we missing the point? Drug Discov Today 9:161–162

    Article  PubMed  Google Scholar 

  • Maupetit J, Derreumaux P, Tuffery P (2009) PEP-FOLD: an online resource for de novo peptide structure prediction. Nucleic Acids Res 37:W498–W503

    Article  PubMed  CAS  Google Scholar 

  • Maurer TS, DeBartolo DB, Tess DA, Scott DO (2005) Relationship between exposure and nonspecific binding of thirty-three central nervous system drugs in mice. Drug Metab Dispos 33:175–181

    Article  PubMed  CAS  Google Scholar 

  • Mensch J, Oyarzabal J, Mackie C, Augustijns P (2009) In vivo, in vitro and in silico methods for small molecule transfer across the BBB. J Pharm Sci 98:4429–4468

    Google Scholar 

  • Mensch J, Melis A, Mackie C, Verreck G, Brewster ME, Augustijns P (2010) Evaluation of various PAMPA models to identify the most discriminating method for the prediction of BBB permeability. Eur J Pharm Biopharm 74:495–502

    Article  PubMed  CAS  Google Scholar 

  • Moriki Y, Suzuki T, Furuishi T, Fukami T, Tomono K, Watanabe J (2005) In vivo evidence for the efflux transport of pentazocine from the brain across the blood–brain barrier using the brain efflux index method. J Drug Target 13:53–59

    Article  PubMed  CAS  Google Scholar 

  • Mueggler T, Baltes C, Rudin M (2009) Molecular neuroimaging in rodents: assessing receptor expression and function. Eur J Neurosci 30:1860–1869

    Article  PubMed  Google Scholar 

  • Murakami H, Takanaga H, Matsuo H, Ohtani H, Sawada Y (2000) Comparison of blood–brain barrier permeability in mice and rats using in situ brain perfusion technique. Am J Physiol Heart Circ Physiol 279:H1022–H1028

    PubMed  CAS  Google Scholar 

  • Nag S (2003) The blood–brain barrier: biology and research protocols. Humana, Totowa

    Google Scholar 

  • Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel A et al (2009) A new blood–brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int 54:253–263

    Article  PubMed  CAS  Google Scholar 

  • Nakai D, Kumamoto K, Sakikawa C, Kosaka T, Tokui T (2004) Evaluation of the protein binding ratio of drugs by a micro-scale ultracentrifugation method. J Pharm Sci 93:847–854

    Article  PubMed  CAS  Google Scholar 

  • Navarro C, Gonzalez-Alvarez I, Gonzalez-Alvarez M, Manku M, Merino V, Casabo VG et al (2011) Influence of polyunsaturated fatty acids on cortisol transport through MDCK and MDCK-MDR1 cells as blood–brain barrier in vitro model. Eur J Pharm Sci 42:290–299

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus W, Stessl M, Strizsik E, Bennani-Baiti B, Wirth M, Toegel S et al (2010) Blood-brain barrier cell line PBMEC/C1–2 possesses functionally active P-glycoprotein. Neurosci Lett 469:224–228

    Article  PubMed  CAS  Google Scholar 

  • Nicolazzo JA, Charman SA, Charman WN (2006) Methods to assess drug permeability across the blood–brain barrier. J Pharm Pharmacol 58:281–293

    Article  PubMed  CAS  Google Scholar 

  • Ohno K, Pettigrew KD, Rapoport SI (1978) Lower limits of cerebrovascular permeability to non-electrolytes in conscious rat. Am J Physiol 235:H299–H307

    PubMed  CAS  Google Scholar 

  • Okura T, Komiyama N, Morita Y, Kimura M, Deguchi Y, Yamada S (2007) Comparative measurement of spinal CSF microdialysate concentrations and concomitant antinociception of morphine and morphine-6[beta]-glucuronide in rats. Life Sci 80:1319–1326

    Article  PubMed  CAS  Google Scholar 

  • Oldendorf WH (1970) Measurement of brain uptake of radiolabeled substances using a tritiated water internal standard. Brain Res 24:372–376

    Article  PubMed  CAS  Google Scholar 

  • Omidi Y, Campbell L, Barar J, Connell D, Akhtar S, Gumbleton M (2003) Evaluation of the immortalised mouse brain capillary endothelial cell line, b.End3, as an in vitro blood-brain barrier model for drug uptake and transport studies. Brain Res 990:95–112

    Article  PubMed  CAS  Google Scholar 

  • Ottaviani G, Martel S, Escarala C, Nicolle E, Carrupt PA (2008) The PAMPA technique as a HTS tool for partition coefficients determination in different solvent/water systems. Eur J Pharm Sci 35:68–75

    Article  PubMed  CAS  Google Scholar 

  • Pan WH, Banks WA, Fasold MB, Bluth J, Kastin AJ (1998a) Transport of brain-derived neurotrophic factor across the blood–brain barrier. Neuropharmacology 37:1553–1561

    Article  PubMed  CAS  Google Scholar 

  • Pan WH, Banks WA, Kastin AJ (1998b) Permeability of the blood–brain barrier to neurotrophins. Brain Res 788:87–94

    Article  PubMed  CAS  Google Scholar 

  • Pan WH, Yu YM, Cain CM, Nyberg F, Couraud PO, Kastin AJ (2005) Permeation of growth hormone across the blood–brain barrier. Endocrinology 146:4898–4904

    Article  PubMed  CAS  Google Scholar 

  • Pan WH, Tu H, Kastin AJ (2006) Differential BBB interactions of three ingestive peptides: obestatin, ghrelin, and adiponectin. Peptides 27:911–916

    Article  PubMed  CAS  Google Scholar 

  • Pardridge WM (1995) Transport of small molecules through the blood–brain-barrier—biology and methodology. Adv Drug Deliv Rev 15:5–36

    Article  CAS  Google Scholar 

  • Pardridge WM (1999a) Introduction to the blood–brain barrier: methodology, biology and pathology. Cambridge University Press, Cambridge

    Google Scholar 

  • Pardridge WM (1999b) Isolated brain capillaries: an in vitro model of blood–brain barrier research. In: Pardridge WM (ed) Introduction to the blood–brain barrier. Cambridge University Press, Cambridge, pp 49–61

    Google Scholar 

  • Pardridge WM (2004) Log(BB), PS products and in silico models of drug brain penetration. Drug Discov Today 9:392–393

    Article  PubMed  Google Scholar 

  • Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cerebr Blood Flow Metab 3:1–7

    Article  CAS  Google Scholar 

  • Peremans K, De Spiegeleer B, Buntinx E, Dobbeleir A, Vermeire S, Vandermeulen E et al (2008) Evaluation of serotonin-2A receptor occupancy with I-123–5-I-R91150 and single-photon emission tomography before and after low-dose pipamperone administration in the canine brain. Nucl Med Commun 29:724–729

    Article  PubMed  CAS  Google Scholar 

  • Petereit AC, Swinney K, Mensch J, Mackie C, Stokbroekx S, Brewster M et al (2010) Prediction of blood–brain barrier penetration of poorly soluble drug candidates using surface activity profiling. Eur J Pharm Biopharm 75:405–410

    Article  PubMed  CAS  Google Scholar 

  • Pidgeon C, Venkataram UV (1989) Immobilized artificial membrane chromatography—supports composed of membrane-lipids. Anal Biochem 176:36–47

    Article  PubMed  CAS  Google Scholar 

  • Plattner VE, Germann B, Neuhaus W, Noe CR, Gabor F, Wirth M (2010) Characterization of two blood–brain barrier mimicking cell lines: distribution of lectin-binding sites and perspectives for drug delivery. Int J Pharm 387:34–41

    Article  PubMed  CAS  Google Scholar 

  • Price TO, Samson WK, Niehoff ML, Banks WA (2007) Permeability of the blood–brain barrier to a novel satiety molecule nesfatin-1. Peptides 28:2372–2381

    Article  PubMed  CAS  Google Scholar 

  • Prieto P, Blaauboer BJ, de Boer AG, Boveri M, Cecchelli R, Clemedson C et al (2004) Blood–brain barrier in vitro models and their application in toxicology—the report and recommendations of ECVAM workshop 49. Altern Lab Anim 32:37–50

    PubMed  CAS  Google Scholar 

  • Raub TJ, Lutzke BS, Andrus PK, Sawada GA, Staton BA (2006) Early preclinical evaluation of brain exposure in support of hit identification and lead optimization. In: Borchardt RT, Kerns EH, Hageman MJ, Thakker DR, Stevens JL (eds) Optimizing the “Drug-Like” properties of leads in drug discovery. Springer, New York, pp 355–410

    Chapter  Google Scholar 

  • Raybon JJ, Boje KMK (2001) A critical evaluation of the brain efflux index method as applied to the nitric oxide synthase inhibitor, aminoguanidine. Biopharm Drug Dispos 22:391–401

    Article  PubMed  CAS  Google Scholar 

  • Read KD, Braggio S (2010) Assessing brain free fraction in early drug discovery. Expert Opin Drug Metab Toxicol 6:337–344

    Article  PubMed  CAS  Google Scholar 

  • Reichel A (2009) Addressing central nervous system (CNS) penetration in drug discovery: basics and implications of the evolving new concept. Chem Biodivers 6:2030–2049

    Article  PubMed  CAS  Google Scholar 

  • Reichel A, Begley DJ (1998) Potential of immobilized artificial membranes for predicting drug penetration across the blood–brain barrier. Pharm Res 15:1270–1274

    Article  PubMed  CAS  Google Scholar 

  • Reichel A, Begley DJ, Abbott NJ (2003) An overview of in vitro techniques for blood–brain barrier studies. In: Nag S (ed) The blood–brain barrier: biology and research protocols. Humana, Totowa, pp 307–324

    Google Scholar 

  • Renkin EM (1959) Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am J Physiol 197:1205–1210

    PubMed  CAS  Google Scholar 

  • Rossi JJ (2011) Inducible and reversible breaching of the blood brain barrier by RNAi. EMBO Mol Med 3:186–188

    Article  PubMed  CAS  Google Scholar 

  • Roux F, Couraud PO (2005) Rat brain endothelial cell lines for the study of blood–brain barrier permeability and transport functions. Cell Mol Neurobiol 25:41–58

    Article  PubMed  Google Scholar 

  • Saunders NR, Dziegielewska KM (1999) Transport in the developing brain. In: Pardridge WM (ed) Introduction to the blood–brain barrier: methodology, biology and pathology. Cambridge University Press, Cambridge, pp 277–289

    Google Scholar 

  • Scheller D, Kolb J (1991) The internal reference technique in microdialysis—a practical approach to monitoring dialysis efficiency and to calculating tissue concentration from dialysate samples. J Neurosci Methods 40:31–38

    Article  PubMed  CAS  Google Scholar 

  • Seelig A, Gottschlich R, Devant RM (1994) A method to determine the ability of drugs to diffuse through the blood–brain-barrier. Proc Natl Acad Sci USA 91:68–72

    Article  PubMed  CAS  Google Scholar 

  • Shayan G, Choi YS, Shusta EV, Shuler ML, Lee KH (2011) Murine in vitro model of the blood–brain barrier for evaluating drug transport. Eur J Pharm Sci 42:148–155

    Article  PubMed  CAS  Google Scholar 

  • Shen DD, Artru AA, Adkison KK (2004) Principles and applicability of CSF sampling for the assessment of CNS drug delivery and pharmacodynamics. Adv Drug Deliv Rev 56:1825–1857

    Article  PubMed  CAS  Google Scholar 

  • Siissalo S, Hannukainen J, Kolehmainen J, Hirvonen J, Kaukonen AM (2009) A Caco-2 cell based screening method for compounds interacting with MRP2 efflux protein. Eur J Pharm Biopharm 71:332–338

    Article  PubMed  CAS  Google Scholar 

  • Smith QR (2003) A review of blood–brain barrier transport techniques. In: Nag S (ed) The blood–brain barrier: biology and research protocols. Humana, Totowa, pp 193–208

    Google Scholar 

  • Smith M, Omidi Y, Gumbleton M (2007) Primary porcine brain microvascular endothelial cells: biochemical and functional characterisation as a model for drug transport and targeting. J Drug Target 15:253–268

    Article  PubMed  CAS  Google Scholar 

  • Stenken JA (1999) Methods and issues in microdialysis calibration. Anal Chim Acta 379:337–358

    Article  CAS  Google Scholar 

  • Stewart BH, Chan OH (1998) Use of immobilized artificial membrane chromatography for drug transport applications. J Pharm Sci 87:1471–1478

    Article  PubMed  CAS  Google Scholar 

  • Su Y, Sinko PJ (2006) Drug delivery across the blood–brain barrier: why is it difficult? How to measure and improve it? Expert Opin Drug Del 3:419–435

    Article  CAS  Google Scholar 

  • Subramanian G, Kitchen DB (2003) Computational models to predict blood–brain barrier permeation and CNS activity. J Comput Aided Mol Des 17:643–664

    Article  PubMed  CAS  Google Scholar 

  • Summerfield SG, Read K, Begley DJ, Obradovic T, Hidalgo IJ, Coggon S et al (2007) Central nervous system drug disposition: the relationship between in situ brain permeability and brain free fraction. J Pharmacol Exp Ther 322:205–213

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Moriki Y, Goto H, Tomono K, Hanano M, Watanabe J (2002) Investigation on the influx transport mechanism of pentazocine at the blood–brain barrier in rats using the carotid injection technique. Biol Pharm Bull 25:1351–1355

    Article  PubMed  CAS  Google Scholar 

  • Taheri S, Sood R (2006) Kalman filtering for reliable estimation of BBB permeability. Magn Reson Imaging 24:1039–1049

    Article  PubMed  CAS  Google Scholar 

  • Taheri S, Sood R (2007) Partial volume effect compensation for improved reliability of quantitative blood–brain barrier permeability. Magn Reson Imaging 25:613–625

    Article  PubMed  Google Scholar 

  • Takasato Y, Rapoport SI, Smith QR (1984) An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am J Physiol 247:H484–H493

    PubMed  CAS  Google Scholar 

  • Terasaki T (1999) Development of brain efflux index (BEI) method and its application to the blood–brain barrier efflux transport study. In: Pardridge WM (ed) Introduction to the blood–brain barrier: methodology, biology and pathology. Cambridge University Press, Cambridge, pp 24–31

    Google Scholar 

  • Terasaki T, Ohtsuki S, Hori S, Takanaga H, Nakashima E, Hosoya K-i (2003) New approaches to in vitro models of blood–brain barrier drug transport. Drug Discov Today 8:944–954

    Article  PubMed  CAS  Google Scholar 

  • Triguero D, Buciak J, Pardridge WM (1990) Capillary depletion method for quantification of blood–brain-barrier transport of circulating peptides and plasma-proteins. J Neurochem 54:1882–1888

    Article  PubMed  CAS  Google Scholar 

  • Tsai TH (2003) Assaying protein unbound drugs using microdialysis techniques. J Chromatogr B Technol Biomed Life Sci 797:161–173

    Article  CAS  Google Scholar 

  • Tunblad K, Jonsson EN, Hammarlund-Udenaes M (2003) Morphine blood–brain barrier transport is influenced by probenecid co-administration. Pharm Res 20:618–623

    Article  PubMed  CAS  Google Scholar 

  • Uchida M, Fukazawa T, Yamazaki Y, Hashimoto H, Miyamoto Y (2009) A modified fast (4 day) 96-well plate Caco-2 permeability assay. J Pharmacol Toxicol Methods 59:39–43

    Article  PubMed  CAS  Google Scholar 

  • Urquhart BL, Kim RB (2009) Blood–brain barrier transporters and response to CNS-active drugs. Eur J Clin Pharmacol 65:1063–1070

    Article  PubMed  CAS  Google Scholar 

  • Usansky HH, Sinko PJ (2003) Computation of log BB values for compounds transported through carrier-mediated mechanisms using in vitro permeability data from brain microvessel endothelial cell (BMEC) monolayers. Pharm Res 20:390–396

    Article  PubMed  CAS  Google Scholar 

  • Van Belle K, Dzeka T, Sarre S, Ebinger G, Michotte Y (1993) In vitro and in vivo microdialysis calibration for the measurement of carbamazepine and its metabolites in rat brain tissue using the internal reference technique. J Neurosci Methods 49:167–173

    Article  PubMed  Google Scholar 

  • Van Dorpe S, Adriaens A, Polis I, Peremans K, Van Bocxlaer J, De Spiegeleer B (2010) Analytical characterization and comparison of the blood–brain barrier permeability of eight opioid peptides. Peptides 31:1390–1399

    Article  PubMed  CAS  Google Scholar 

  • Van Dorpe S, Adriaens A, Vermeire S, Polis I, Peremans K, De Spiegeleer B (2011) Desirability function combining metabolic stability and functionality of peptides. J Pept Sci 17:398–404

    Article  PubMed  CAS  Google Scholar 

  • Vanhee P, Reumers J, Stricher F, Baeten L, Serrano L, Schymkowitz J et al (2010) PepX: a structural database of non-redundant protein-peptide complexes. Nucleic Acids Res 38:D545–D551

    Article  PubMed  CAS  Google Scholar 

  • Verma RP, Hansch C, Selassie CD (2007) Comparative QSAR studies on PAMPA/modified PAMPA for high throughput profiling of drug absorption potential with respect to Caco-2 cells and human intestinal absorption. J Comput Aided Mol Des 21:3–22

    Article  PubMed  CAS  Google Scholar 

  • Walker I, Coleman MD (1995) The blood–brain barrier: in vitro methods and toxicological applications. Toxicol In Vitro 9:191–204

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Rager JD, Weinstein K, Kardos PS, Dobson GL, Li JB et al (2005) Evaluation of the MDR-MDCK cell line as a permeability screen for the blood–brain barrier. Int J Pharm 288:349–359

    Article  PubMed  CAS  Google Scholar 

  • Wang GS, Li X, Wang Z (2009) APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 37:D933–D937

    Article  PubMed  CAS  Google Scholar 

  • Webb S, Ott RJ, Cherry SR (1989) Quantitation of blood–brain barrier permeability by positron emission tomography. Phys Med Biol 34:1767–1771

    Article  PubMed  CAS  Google Scholar 

  • Wilson JF, Anderson S, Snook G, Llewellyn KD (1984) Quantification of the permeability of the blood–CSF barrier to [alpha]-MSH in the rat. Peptides 5:681–685

    Article  PubMed  CAS  Google Scholar 

  • Yazdanian M, Glynn SL, Wright JL, Hawi A (1998) Correlating partitioning and Caco-2 cell permeability of structurally diverse small molecular weight compounds. Pharm Res 15:1490–1494

    Article  PubMed  CAS  Google Scholar 

  • Yoon CH, Kim SJ, Soo BS, Lee SC, Yoo SD (2006) Rapid screening of blood–brain barrier penetration of drugs using the immobilized artificial membrane phosphatidylcholine column chromatography. J Biomol Screen 11:13–20

    Article  PubMed  CAS  Google Scholar 

  • Zlokovic BV, Hyman S, McComb JG, Lipovac MN, Tang G, Davson H (1990) Kinetics of arginine-vasopressin uptake at the blood–brain-barrier. Biochim Biophys Acta 1025:191–198

    Article  PubMed  CAS  Google Scholar 

  • Zlokovic BV, Mackic JB, McComb JG, Weiss MH, Kaplowitz N, Kannan R (1994) Evidence for transcapillary transport of reduced glutathione in vascular perfused guinea-pig brain. Biochem Biophys Res Commun 201:402–408

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a PhD grant of ‘Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen)’ (73402 to S.V.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart De Spiegeleer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Dorpe, S., Bronselaer, A., Nielandt, J. et al. Brainpeps: the blood–brain barrier peptide database. Brain Struct Funct 217, 687–718 (2012). https://doi.org/10.1007/s00429-011-0375-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-011-0375-0

Keywords

Navigation