Skip to main content

Advertisement

Log in

Topographical Distribution of Morphological Changes in a Partial Model of Parkinson’s Disease—Effects of Nanoencapsulated Neurotrophic Factors Administration

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Administration of various neurotrophic factors is a promising strategy against Parkinson’s disease (PD). An intrastriatal infusion of 6-hydroxidopamine (6-OHDA) in rats is a suitable model to study PD. This work aims to describe stereological parameters regarding rostro-caudal gradient, in order to characterize the model and verify its suitability for elucidating the benefits of therapeutic strategies. Administration of 6-OHDA induced a reduction in tyrosine hidroxylase (TH) reactivity in the dorsolateral part of the striatum, being higher in the caudal section than in the rostral one. Loss of TH-positive neurons and axodendritic network was highly significant in the external third of substantia nigra (e-SN) in the 6-OHDA group versus the saline one. After the administration of nanospheres loaded with neurotrophic factors (NTF: vascular endothelial growth factor (VEGF) + glial cell line-derived neurotrophic factor (GDNF)), parkinsonized rats showed more TH-positive fibers than those of control groups; this recovery taking place chiefly in the rostral sections. Neuronal density and axodendritic network in e-SN was more significant than in the entire SN; the topographical analysis showed that the highest difference between NTF versus control group was attained in the middle section. A high number of bromodeoxyuridine (BrdU)-positive cells were found in sub- and periventricular areas in the group receiving NTF, where most of them co-expressed doublecortin. Measurements on the e-SN achieved more specific and significant results than in the entire SN. This difference in rostro-caudal gradients underpins the usefulness of a topological approach to the assessment of the lesion and therapeutic strategies. Findings confirmed the neurorestorative, neurogenic, and synergistic effects of VEGF + GDNF administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Savitt JM, Dawson VL, Dawson TM (2006) Diagnosis and treatment of Parkinson disease: molecules to medicine. J Clin Invest 116:1744–1754

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Olanow CW, Stern MB, Sethi K (2009) The scientific and clinical basis for the treatment of Parkinson’s disease. Neurology 72:1–136

    Article  Google Scholar 

  3. Gibb WR (1997) Functional neuropathology in Parkinson’s disease. Eur Neurol 38(Suppl 2):21–25

    Article  PubMed  Google Scholar 

  4. Herrán E, Requejo C, Ruiz-Ortega JA, Aristieta A, Igartua M, Bengoetxea H, Ugedo L, Pedraz JL, Lafuente JV, Hernández RM (2014) Increased antiparkinson efficacy of the combined administration of VEGF- and GDNF-loaded nanospheres in a partial lesion model of Parkinson’s disease. Int J Nanomedicine 9:2677–2687

    PubMed Central  PubMed  Google Scholar 

  5. Franco V, Turner RS (2012) Testing the contributions of striatal dopamine loss to the genesis of parkinsonian signs. Neurobiol Dis 47:114–1125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Bayer SA (1984) Neurogenesis in the rat neostriatum. Int J Dev Neurosci 2:163–175

    Article  CAS  PubMed  Google Scholar 

  7. Obeso JA, Rodriguez-Oroz MC, Goetz CG, Marin C, Kordower JH, Rodriguez M, Hirsch EC, Farrer M, Schapira AH, Halliday G (2010) Missing pieces in the Parkinson’s disease puzzle. Nat Med 16:653–661

    Article  CAS  PubMed  Google Scholar 

  8. Glinka Y, Gassen M, Youdim MB (1997) Mechanism of 6-hydroxydopamine neurotoxicity. J Neural Transm Suppl 50:55–66

    Article  CAS  PubMed  Google Scholar 

  9. Herrán E, Ruiz-Ortega JÁ, Aristieta A, Igartua M, Requejo C, Lafuente JV, Ugedo L, Pedraz JL, Hernández RM (2013) In vivo administration of VEGF- and GDNF-releasing biodegradable polymeric microspheres in a severe lesion model of Parkinson’s disease. Eur J Pharm Biopharm 85:1183–1190

    Article  PubMed  Google Scholar 

  10. Morera-Herreras T, Ruiz-Ortega JA, Linazasoro G, Ugedo L (2011) Nigrostriatal denervation changes the effect of cannabinoids on subthalamic neuronal activity in rats. Psychopharmacol (Berl) 214:379–389

    Article  CAS  Google Scholar 

  11. Paxinos G, Watson C (1997) The rat brain in steretaxic coordinates. Academic, San Diego

    Google Scholar 

  12. Bjorklund A, Winkler C, Rosenblad C, Kirik D (1997) Studies on neuroprotective and regenerative effects of GDNF in a partial lesion model of Parkinson’s disease. Neurobiol Dis 4:186–200

    Article  CAS  PubMed  Google Scholar 

  13. Przedborski S, Levivier M, Kostic V, Jackson-Lewis V, Dollison A, Gash DM, Fahn S, Cadet JL (1991) Sham transplantation protects against 6-hydroxydopamine-induced dopaminergic toxicity in rats: behavioral and morphological evidence. Brain Res 550:231–238

    Article  CAS  PubMed  Google Scholar 

  14. Brodkey JA, Gates MA, Laywell ED, Steindler DA (1993) The complex nature of interactive neuroregeneration-related molecules. Exp Neurol 123:251–270

    Article  CAS  PubMed  Google Scholar 

  15. Clarke LE, Barres BA (2013) Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 14:311–321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Fuller HR, Hurtado ML, Wishart TM, Gates MA (2014) The rat striatum responds to nigro-striatal degeneration via the increased expression of proteins associated with growth and regeneration of neuronal circuitry. Proteome Sci 28;12:20

  17. Barcia C, Bautista V, Sánchez-Bahillo A, Fernández-Villalba E, Faucheux B, Poza y Poza M, Fernandez Barreiro A, Hirsch EC, Herrero MT (2005) Changes in vascularization in substantia nigra pars compacta of monkeys rendered parkinsonian. J Neural Transm 112:1237–1248

    Article  CAS  PubMed  Google Scholar 

  18. Block ML, Li G, Qin L, Wu X, Pei Z, Wang T (2006) Potent regulation of microglia-derived oxidative stress and dopaminergic neuron survival: substance P vs. dynorphin. FASEB J 20:251–258

    Article  CAS  PubMed  Google Scholar 

  19. Sarre S, Yuan H, Jonkers N, Van Hemelrijck A, Ebinger G, Michotte Y (2004) In vivo characterization of somatodendritic dopamine release in the substantia nigra of 6-hydroxydopamine lesioned rats. J Neurochem 90:29–39

    Article  CAS  PubMed  Google Scholar 

  20. Agid Y, Javoy F, Glowinski J (1973) Hyperactivity of remaining dopaminergic neurones after partial destruction of the nigro-striatal dopaminergic system in the rat. Nat New Biol 245:150–151

    Article  CAS  PubMed  Google Scholar 

  21. Jankovic J, Shoulson I, Weiner WJ (1994) Early-stage Parkinson’s disease: to treat or not to treat. Neurology 44(Suppl 1):4–7

    Google Scholar 

  22. Li Z, Decavel C, Hatton GI (1995) Calbindin-D28k: role in determining intrinsically generated firing patterns in rat supraoptic neurones. J Physiol 488:601–608

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Hurley MJ, Brandon B, Gentleman SM, Dexter DT (2013) Parkinson’s disease is associated with altered expression of CaV1 channels and calcium-binding proteins. Brain 136:2077–2097

    Article  PubMed  Google Scholar 

  24. Cervós-Navarro J, Lafuente JV (1991) Traumatic brain injuries: structural changes. J Neurol Sci 103:S3–S14

    Article  PubMed  Google Scholar 

  25. Surmeier DJ, Guzman JN, Sanchez-Padilla J, Goldberg JA (2011) The origins of oxidant stress in Parkinson’s disease and therapeutic strategies. Antioxid Redox Signal 14:1289–1301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Jollivet C, Aubert-Pouessel A, Clavreul A, Venier-Julienne MC, Montero-Menei CN, Benoit JP, Menei P (2004) Long-term effect of intra-striatal glial cell line-derived neurotrophic factor-releasing microspheres in a partial rat model of Parkinson’s disease. Neurosci Lett 356:207–210

    Article  CAS  PubMed  Google Scholar 

  27. Garbayo E, Montero-Menei CN, Ansorena E, Lanciego JL, Aymerich MS, Blanco-Prieto MJ (2009) Effective GDNF brain delivery using microspheres—a promising strategy for Parkinson’s disease. J Control Release 135:119–126

    Article  CAS  PubMed  Google Scholar 

  28. Rosenblad C, Kirik D, Bjorklund A (2000) Sequential administration of GDNF into the substantia nigra and striatum promotes dopamine neuron survival and axonal sprouting but not striatal reinnervation or functional recovery in the partial 6-OHDA lesion model. Exp Neurol 161:503–516

    Article  CAS  PubMed  Google Scholar 

  29. Tufro A, Teichman J, Banu N, Villegas G (2007) Crosstalk between VEGF-A/VEGFR2 and GDNF/RET signaling pathways. Biochem Biophys Res Commun 358:410–416

    Article  CAS  PubMed  Google Scholar 

  30. Yasuhara T, Shing T, Kobayashi K et al (2004) Neuroprotective effects of vascular endothelial growth factor (VEGF) upon dopaminergic neurons in a rat model of Parkinson’s disease. Eur J Neurosci 19:1494–1504

    Article  PubMed  Google Scholar 

  31. Harrigan MR, Ennis SR, Sullivan SE, Keep RF (2003) Effects of intraventricular infusion of vascular endothelial growth factor on cerebral blood flow, edema, and infarct volume. Acta Neurochir (Wien) 145:49–53

    Article  CAS  Google Scholar 

  32. Rite I, Machado A, Cano J, Venero JL (2007) Blood-brain barrier disruption induces in vivo degeneration of nigral dopaminergic neurons. J Neurochem 101:1567–1582

    Article  CAS  PubMed  Google Scholar 

  33. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L (2006) VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol 7:359–371

    Article  CAS  PubMed  Google Scholar 

  34. Falk T, Gonzalez RT, Sherman SJ (2010) The yin and yang of VEGF and PEDF: multifaceted neurotrophic factors and their potential in the treatment of Parkinson’s disease. Int J Mol Sci 11:2875–2900

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Birling MC, Price J (1995) Influence of growth factors on neuronal differentiation. Curr Opin Cell Biol 7:878–847

    Article  CAS  PubMed  Google Scholar 

  36. Schwartz PM, Borghesani PR, Levy RL, Pomeroy SL, Segal RA (1997) Abnormal cerebellar development and foliation in BDNF−/− mice reveals a role for neurotrophins in CNS patterning. Neuron 19:269–281

    Article  CAS  PubMed  Google Scholar 

  37. Xiong N, Zhang Z, Huang J, Chen C, Zhang Z, Jia M, Xiong J, Liu X, Wang F, Cao X, Liang Z, Sun S, Lin Z, Wang T (2011) VEGF-expressing human umbilical cord mesenchymal stem cells, an improved therapy strategy for Parkinson’s disease. Gene Ther 18:394–402

    Article  CAS  PubMed  Google Scholar 

  38. Sopova K, Gatsiou K, Stellos K, Laske C (2014) Dysregulation of neurotrophic and haematopoietic growth factors in Alzheimer’s disease: from pathophysiology to novel treatment strategies. Curr Alzheimer Res 11:27–39

    Article  CAS  PubMed  Google Scholar 

  39. Pellegrini L, Bennis Y, Guillet B, Velly L, Garrigue P, Sabatier F, Dignat-George F, Bruder N, Pisano P (2013) Therapeutic benefit of a combined strategy using erythropoietin and endothelial progenitor cells after transient focal cerebral ischemia in rats. Neurol Res 35:937–947

    Article  CAS  PubMed  Google Scholar 

  40. Gittis AH, Hang GB, LaDow ES, Shoenfeld LR, Atallah BV, Finkbeiner S, Kreitzer AC (2011) Rapid target-specific remodeling of fast-spiking inhibitory circuits after loss of dopamine. Neuron 71:858–868

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Batchelor PE, Liberatore GT, Porritt MJ, Donnan GA, Howells DW (2000) Inhibition of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor expression reduces dopaminergic sprouting in the injured striatum. Eur J Neurosci 12:3462–3468

    Article  CAS  PubMed  Google Scholar 

  42. Lindvall O, Björklund A, Skagerberg G (1984) Selective histochemical demonstration of dopamine terminal systems in rat di- and telencephalon: new evidence for dopaminergic innervation of hypothalamic neurosecretory nuclei. Brain Res 306:19–30

    Article  CAS  PubMed  Google Scholar 

  43. Deumens R, Blokland A, Prickaerts J (2002) Modeling Parkinson’s disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol 175:303–317

    Article  CAS  PubMed  Google Scholar 

  44. Yue X, Hariri DJ, Caballero B, Zhang S, Bartlett MJ, Kaut O, Mount DW, Wüllner U, Sherman SJ, Falk T (2014) Comparative study of the neurotrophic effects elicited by VEGF-B and GDNF in preclinical in vivo models of Parkinson’s disease. Neuroscience 258:385–400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Rosenblad C, Kirik D, Devaux B, Moffat B, Phillips HS, Björklund A (1999) Protection and regeneration of nigral dopaminergic neurons by neurturin or GDNF in a partial lesion model of Parkinson’s disease after administration into the striatum or the lateral ventricle. Eur J Neurosci 11:1554–1566

    Article  CAS  PubMed  Google Scholar 

  46. García-Amado M, Prensa L (2013) Distribution of dopamine transporter immunoreactive fibers in the human amygdaloid complex. Euro J Neurosci 38:3589–3601

    Article  Google Scholar 

  47. Ortuzar N, Rico-Barrio I, Bengoetxea H, Argandoña EG, Lafuente JV (2013) VEGF reverts the cognitive impairment induced by a focal traumatic brain injury during the development of rats raised under environmental enrichment. Behav Brain Res 246:36–46

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the support of the University of the Basque Country (UPV/EHU) (UFI 11/32), the Basque Government (Saiotek SA-2010/00028, GIC 794/13, IT 747/13), “Ministerio de Ciencia e Innovación” (SAF2010-20375), FEDER funds and SGIker (UPV/EHU). C. Requejo appreciates the UPV/EHU for a fellowship subvention.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Requejo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Requejo, C., Ruiz-Ortega, J.A., Bengoetxea, H. et al. Topographical Distribution of Morphological Changes in a Partial Model of Parkinson’s Disease—Effects of Nanoencapsulated Neurotrophic Factors Administration. Mol Neurobiol 52, 846–858 (2015). https://doi.org/10.1007/s12035-015-9234-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9234-y

Keywords

Navigation