Skip to main content

Advertisement

Log in

Sparse Multivariate Autoregressive Modeling for Mild Cognitive Impairment Classification

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Brain connectivity network derived from functional magnetic resonance imaging (fMRI) is becoming increasingly prevalent in the researches related to cognitive and perceptual processes. The capability to detect causal or effective connectivity is highly desirable for understanding the cooperative nature of brain network, particularly when the ultimate goal is to obtain good performance of control-patient classification with biological meaningful interpretations. Understanding directed functional interactions between brain regions via brain connectivity network is a challenging task. Since many genetic and biomedical networks are intrinsically sparse, incorporating sparsity property into connectivity modeling can make the derived models more biologically plausible. Accordingly, we propose an effective connectivity modeling of resting-state fMRI data based on the multivariate autoregressive (MAR) modeling technique, which is widely used to characterize temporal information of dynamic systems. This MAR modeling technique allows for the identification of effective connectivity using the Granger causality concept and reducing the spurious causality connectivity in assessment of directed functional interaction from fMRI data. A forward orthogonal least squares (OLS) regression algorithm is further used to construct a sparse MAR model. By applying the proposed modeling to mild cognitive impairment (MCI) classification, we identify several most discriminative regions, including middle cingulate gyrus, posterior cingulate gyrus, lingual gyrus and caudate regions, in line with results reported in previous findings. A relatively high classification accuracy of 91.89 % is also achieved, with an increment of 5.4 % compared to the fully-connected, non-directional Pearson-correlation-based functional connectivity approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad, F., Maqbool, M., Kim, E., Park, H., & Kim, D. E. (2012). An efficient method for effective connectivity of brain regions. Concepts in Magnetic Resonance Part A, 40, 14–24.

    Article  Google Scholar 

  • Akaike, H. (1974). New look at statistical—model identification. IEEE Transactions on Automatic Control, 19, 716–723.

    Article  Google Scholar 

  • Anderson, R. J., Simpson, A. C., Channon, S., Samuel, M., & Brown, R. G. (2013). Social problem solving, social cognition, and mild cognitive impairment in Parkinson's disease. Behavioral Neuroscience, 127, 184–192.

    Article  PubMed  Google Scholar 

  • Apostolova, L. G., Beyer, M., Green, A. E., Hwang, K. S., Morra, J. H., Chou, Y. Y., et al. (2010). Hippocampal, caudate, and ventricular changes in Parkinson's disease with and without dementia. Movement Disorders, 25, 687–695.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bai, F., Zhang, Z., Yu, H., Shi, Y., Yuan, Y., Zhu, W., et al. (2008). Default-mode network activity distinguishes amnestic type mild cognitive impairment from healthy aging: a combined structural and resting-state functional MRI study. Neuroscience Letters, 438, 111–115.

    Article  CAS  PubMed  Google Scholar 

  • Bianchi, A. M., Marchetta, E., Tana, M. G., Tettamanti, M., & Rizzo, G. (2013). Frequency-based approach to the study of semantic brain networks connectivity. Journal of Neuroscience Methods, 212, 181–189.

    Article  CAS  PubMed  Google Scholar 

  • Billings, S. A., & Wei, H. L. (2007). Sparse model identification using a forward orthogonal regression algorithm aided by mutual information. IEEE Transactions on Neural Networks, 18, 306–310.

    Article  PubMed  Google Scholar 

  • Billings, S. A., Chen, S., & Korenberg, M. J. (1989). Identification of MIMO non-linear systems using a forward-regression orthogonal estimator. International Journal of Control, 49, 2157–2189.

    Article  Google Scholar 

  • Bolla, K. I., Eldreth, D. A., et al. (2003). Orbitofrontal cortex dysfunction in abstinent cocaine abusers performing a decision-making task. NeuroImage, 19, 1085–1094.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Camicioli, R., Gee, M., et al. (2009). Voxel-based morphometry reveals extra-nigral atrophy patterns associated with dopamine refractory cognitive and motor impairment in parkinsonism. Parkinsonism & Related Disorders, 15, 187–195.

    Article  Google Scholar 

  • Chen, S., Billings, S. A., et al. (1989). Orthogonal least-squares methods and their application to non-linear system-identification. International Journal of Control, l50, 1873–1896.

    Article  Google Scholar 

  • Chen, S., Cowan, C. F. N., et al. (1991). Orthogonal least-squares learning algorithm for radial basis function networks. IEEE Transactions on Neural Networks, 2, 302–309.

    Article  CAS  PubMed  Google Scholar 

  • Chen, S., Hong, X., et al. (2003). Sparse kernel regression modeling using combined locally regularized orthogonal least squares and D-optimality experimental design. IEEE Transactions on Automatic Control, 48, 1029–1036.

    Article  Google Scholar 

  • Chen, S., Hong, X., et al. (2004). Sparse modeling using orthogonal forward regression with PRESS statistic and regularization. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 34, 898–911.

    Article  Google Scholar 

  • Chetelat, G., Desgranges, B., et al. (2002). Mapping gray matter loss with voxel-based morphometry in mild cognitive impairment. Neuroreport, 13, 1939–1943.

    Article  PubMed  Google Scholar 

  • Dai, W., Lopez, O. L., et al. (2009). Mild cognitive impairment and Alzheimer disease: patterns of altered cerebral blood flow at MR imaging. Radiology, 250, 856–866.

    Article  PubMed Central  PubMed  Google Scholar 

  • Deshpande, G., LaConte, S., James, G. A., Peltier, S., & Hu, X. (2009). Multivariate Granger causality analysis of fMRI data. Human Brain Mapping, 30, 1361–1373.

    Article  PubMed  Google Scholar 

  • Deshpande, G., Libero, L. E., Sreenivasan, K. R., Deshpande, H. D., & Kana, R. K. (2013). Identification of neural connectivity signatures of autism using machine learning. Frontiers in Human Neuroscience, 7, 670.

    Article  PubMed Central  PubMed  Google Scholar 

  • De Vogelaere, Santens, F. P., et al. (2012). Altered default-mode network activation in mild cognitive impairment compared with healthy aging. Neuroradiology, 54, 1195–1206.

    Article  PubMed  Google Scholar 

  • Ding, M. Z., Bressler, S. L., et al. (2000). Short-window spectral analysis of cortical event-related potentials by adaptive multivariate autoregressive modeling: data preprocessing, model validation, and variability assessment. Biological Cybernetics, 83, 35–45.

    Article  CAS  PubMed  Google Scholar 

  • Di Paola, Iulio, M. F. D., et al. (2010). When, where, and how the corpus callosum changes in MCI and AD A multimodal MRI study. Neurology, 74, 1136–1142.

    Article  PubMed  Google Scholar 

  • Fan, Y., Rao, H., Hurt, H., Giannetta, J., Korczykowski, M., et al. (2007). Multivariate examination of brain abnormality using both structural and functional MRI. NeuroImage, 36, 1189–1199.

  • Fox, N. C., Crum, W. R., et al. (2001). Imaging of onset and progression of Alzheimer's disease with voxel-compression mapping of serial magnetic resonance images. Lancet, 358, 201–205.

    Article  CAS  PubMed  Google Scholar 

  • Friston, K. J., Frith, C. D., et al. (1995). Characterizing dynamic brain responses with fMRI—a multivariate approach. NeuroImage, 2, 166–172.

    Article  CAS  PubMed  Google Scholar 

  • Friston, K. J., Li, B. J., Daunizeau, J., & Stephan, K. E. (2011). Network discovery with DCM. NeuroImage, 56, 1202–1221.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gauthier, S., Reisberg, B., et al. (2006). Mild cognitive impairment. Lancet, 367, 1262–1270.

    Article  PubMed  Google Scholar 

  • Goebel, R., Roebroeck, A., et al. (2003). Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. Magnetic Resonance Imaging, 21, 1251–1261.

    Article  PubMed  Google Scholar 

  • Grambaite, R., Selnes, P., et al. (2011). Executive dysfunction in mild cognitive impairment is associated with changes in frontal and cingulate white matter tracts. Journal of Alzheimer's Disease, 27, 453–462.

    PubMed  Google Scholar 

  • Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37, 414–420.

    Google Scholar 

  • Greicius, M. D., Krasnow, B., et al. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100, 253–258.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Greicius, M. D., Srivastava, G., et al. (2004). Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 101, 4637–4642.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grundman, M., Petersen, R. C., et al. (2004). Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials. Archives of Neurology, 61, 59–66.

    Article  PubMed  Google Scholar 

  • Guyon, I., Weston, J., et al. (2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46, 389–422.

    Article  Google Scholar 

  • Han, S. D., Arfanakis, K., et al. (2012). Functional connectivity variations in mild cognitive impairment: associations with cognitive function. Journal of the International Neuropsychological Society, 18, 39–48.

    Article  PubMed Central  PubMed  Google Scholar 

  • Harrison, L., Penny, W. D., et al. (2003). Multivariate autoregressive modeling of fMRI time series. NeuroImage, 19, 1477–1491.

    Article  CAS  PubMed  Google Scholar 

  • Horwitz, B., & Smith, J. F. (2008). A link between neuroscience and informatics: large-scale modeling of memory processes. Methods, 44, 338–347.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jia, H., Wu, G., Wang, Q., Shen, D. (2010). ABSORB: Atlas building by self-organized registration and bundling. NeuroImage, 51, 1057–1070.

  • Kotter, R., & Stephan, K. E. (2003). Network participation indices: characterizing componet roles for information processing in neural networks. Neural Networks, 16, 1261–1275.

    Article  PubMed  Google Scholar 

  • Leonardi, N., Richiardi, J., Gschwind, M., Simioni, S., Annoni, J.-M., et al. (2013). Principal components of functional connectivity: a new approach to study dynamic brain connectivity during rest. NeuroImage, 83, 937–950.

    Article  PubMed  Google Scholar 

  • Li, X., Coyle, D., et al. (2011). A model selection method for nonlinear system identification based fMRI effective connectivity analysis. IEEE Transactions on Medical Imaging, 30, 1365–1380.

    Article  PubMed  Google Scholar 

  • Li, Y., Wei, H. L., et al. (2011a). Identification of time-varying systems using multi-wavelet basis functions. IEEE Transactions on Control Systems Technology, 19, 656–663.

    Article  CAS  Google Scholar 

  • Li, Y., Wei, H. L., et al. (2011b). Time-varying model identification for time-frequency feature extraction from EEG data. Journal of Neuroscience Methods, 196, 151–158.

    Article  PubMed  Google Scholar 

  • Li, Y., Wang, Y., Wu, G., Shi, F., Zhou, L., et al. (2012a). Discriminant analysis of longitudinal cortical thickness changes in Alzheimer's disease using dynamic and network features. Neurobiol Aging, 33, 427.e415–427.e430.

    Google Scholar 

  • Li, Y., Wei, H. L., et al. (2012b). Time-varying linear and nonlinear parametric model for Granger causality analysis. Physical Review E, 85(4).

  • Liu, M., Zhang, D., Shen, D. (2012). Ensemble sparse classification of Alzheimer's disease. NeuroImage, 60, 1106–1116.

  • Lynall, M. E., Bassett, D. S., et al. (2010). Functional connectivity and brain networks in schizophrenia. Journal of Neuroscience, 30, 9477–9487.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martinez-Montes, E., Valdes-Sosa, P. A., et al. (2004). Concurrent EEG/fMRI analysis by multiway partial least squares. NeuroImage, 22, 1023–1034.

    Article  PubMed  Google Scholar 

  • Melzer, T. R., Watts, R., et al. (2012). Grey matter atrophy in cognitively impaired Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 83, 188–194.

    Article  PubMed  Google Scholar 

  • Miao, X., Wu, X., et al. (2011). Altered connectivity pattern of hubs in default-mode network with Alzheimer's disease: an granger causality modeling approach. PLoS ONE, 6, e25546.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murphy, K., Birn, R. M., et al. (2009). The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? NeuroImage, 44, 893–905.

    Article  PubMed Central  PubMed  Google Scholar 

  • Nickl-Jockschat, T., Kleiman, A., et al. (2012). Neuroanatomic changes and their association with cognitive decline in mild cognitive impairment: a meta-analysis. Brain Structure & Function, 217, 115–125.

    Article  Google Scholar 

  • Oertel, V., Knoechel, C., et al. (2010). Reduced laterality as a trait marker of schizophrenia-evidence from structural and functional neuroimaging. Journal of Neuroscience, 30, 2289–2299.

    Article  CAS  PubMed  Google Scholar 

  • Petersen, R. C. (2011). Mild cognitive impairment. New England Journal of Medicine, 364, 2227–2234.

    Article  CAS  PubMed  Google Scholar 

  • Petersen, R. C., Smith, G. E., et al. (1999). Mild cognitive impairment—clinical characterization and outcome. Archives of Neurology, 56, 303–308.

    Article  CAS  PubMed  Google Scholar 

  • Petersen, R. C., Doody, R., Kurz, A., et al. (2001). Current concepts in mild cognitive impairment. Archives of Neurology, 58, 1985–1992.

    Article  CAS  PubMed  Google Scholar 

  • Qi, Z., Wu, X., et al. (2010). Impairment and compensation coexist in amnestic MCI default mode network. NeuroImage, 50, 48–55.

    Article  PubMed  Google Scholar 

  • Qiao, H., Zhang, H., Zheng, Y., Ponde, DE., Shen, D., et al. (2009). Embryonic stem cell grafting in normal and infarcted myocardium: serial assessment with MR imaging and PET dual detection. Radiology, 250, 821–829.

    Google Scholar 

  • Rajapakse, J. C., & Zhou, J. (2007). Learning effective brain connectivity with dynamic Bayesian networks. NeuroImage, 37, 749–760.

    Article  PubMed  Google Scholar 

  • Richiardi, J., Gschwind, M., Simioni, S., Annoni, J. M., Greco, B., Hagmann, P., et al. (2012). Classifying minimally disabled multiple sclerosis patients from resting state functional connectivity. NeuroImage, 62, 2021–2033.

    Article  PubMed  Google Scholar 

  • Roebroeck, A., Formisano, E., et al. (2011). The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution. NeuroImage, 58, 296–302.

    Article  PubMed  Google Scholar 

  • Sato, J. R., Fujita, A., Cardoso, E. F., Thomaz, C. E., Brammer, M. J., & Amaro, E. (2010). Analyzing the connectivity between regions of interest: an approach based on cluster Granger causality for fMRI data analysis. NeuroImage, 52, 1444–1455.

    Article  PubMed  Google Scholar 

  • Saur, R., Milian, M., et al. (2010). Cortical activation during clock reading as a quadratic function of dementia state. Journal of Alzheimer's Disease, 22, 267–284.

    PubMed  Google Scholar 

  • Schwarz, G. (1978). Estimating dimension of a model. Annals of Statistics, 6, 461–464.

    Article  Google Scholar 

  • Shen, D. G., & Davatzikos, C. (2002). HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE Transactions on Medical Imaging, 21, 1421–1439.

    Article  PubMed  Google Scholar 

  • Shimamura, T., Imoto, S., et al. (2009). Recursive regularization for inferring gene networks from time-course gene expression profiles. BMC Systems Biology, 3.

  • Shirer, W. R., Ryali, S., Rykhlevskaia, E., Menon, V., & Greicius, M. D. (2012). Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cerebral Cortex, 22, 158–165.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith, S. M. (2012). The future of FMRI connectivity. NeuroImage, 62, 1257–1266.

    Article  PubMed  Google Scholar 

  • Smith, S. M., Miller, K. L., et al. (2011). Network modelling methods for FMRI. NeuroImage, 54, 875–891.

    Article  PubMed  Google Scholar 

  • Sporns, O., & Zwi, J. D. (2004). The small world of the cerebral cortex. Neuroinformatics, 2, 145–162.

    Article  PubMed  Google Scholar 

  • Sporns, O., Tononi, G., et al. (2000). Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cerebral Cortex, 10, 127–141.

    Article  CAS  PubMed  Google Scholar 

  • Sporns, O., Chialvo, D. R., et al. (2004). Organization, development and function of complex brain networks. Trends in Cognitive Sciences, 8, 418–425.

    Article  PubMed  Google Scholar 

  • Supekar, K., Menon, V., et al. (2008). Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Computational Biology, 4(6).

  • Tang, S., Fan, Y., Wu, G., Kim, M., Shen, D., (2009). RABBIT: Rapid alignment of brains by building intermediate templates. NeuroImage, 47, 1277–1287.

  • Tekin, S., Mega, M. S., et al. (2001). Orbitofrontal and anterior cingulate cortex neurofibrillary tangle burden is associated with agitation in Alzheimer disease. Annals of Neurology, 49, 355–361.

    Article  CAS  PubMed  Google Scholar 

  • Tondelli, M., Wilcock, G. K., et al. (2012). Structural MRI changes detectable up to 10 years before clinical Alzheimer’s disease. Neurobiology of Aging, 33(4).

  • Tzourio-Mazoyer, N., Landeau, B., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15, 273–289.

    Article  CAS  PubMed  Google Scholar 

  • Valdes-Sosa, P. A. (2004). Spatio-temporal autoregressive models defined over brain manifolds. Neuroinformatics, 2, 239–250.

    Article  PubMed  Google Scholar 

  • Valdes-Sosa, P. A., Sanchez-Bornot, J. M., et al. (2005). Estimating brain functional connectivity with sparse multivariate autoregression. Philosophical Transactions of the Royal Society B-Biological Sciences, 360, 969–981.

    Article  PubMed Central  Google Scholar 

  • Walter, H., Adenzato, M., et al. (2004). Understanding intentions in social interaction: the role of the anterior paracingulate cortex. Journal of Cognitive Neuroscience, 16, 1854–1863.

    Article  PubMed  Google Scholar 

  • Wang, K., Liang, M., et al. (2007). Altered functional connectivity in early Alzheimer's disease: a resting-state fMRI study. Human Brain Mapping, 28, 967–978.

    Article  PubMed  Google Scholar 

  • Wee, C. Y., Yap, P. T., et al. (2011). Enriched white matter connectivity networks for accurate identification of MCI patients. NeuroImage, 54, 1812–1822.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wee, C. Y., Yap, P. T., et al. (2012a). Resting-state multi-spectrum functional connectivity networks for identification of MCI patients. PLoS ONE, 7(5).

  • Wee, C. Y., Yap, P. T., et al. (2012b). Identification of MCI individuals using structural and functional connectivity networks. NeuroImage, 59, 2045–2056.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wee, C. Y., Yap, P. T., et al. (2013). Group-constrained sparse fMRI connectivity modeling for mild cognitive impairment identification. Brain Structure and Function. doi:10.1007/s00429-013-0524-8.

    PubMed  Google Scholar 

  • Wei, H. L., & Billings, S. A. (2007). Feature subset selection and ranking for data dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29, 162–166.

    Article  PubMed  Google Scholar 

  • Wei, H. L., Zheng, Y., et al. (2009). Model estimation of cerebral hemodynamics between blood flow and volume changes: a data-based modeling approach. IEEE Transactions on Biomedical Engineering, 56, 1606–1616.

    Article  PubMed  Google Scholar 

  • White, M. P., Shirer, W. R., Molfino, M. J., Tenison, C., Damoiseaux, J. S., & Greicius, M. D. (2013). Disordered reward processing and functional connectivity in trichotillomania: a pilot study. Journal of Psychiatric Research, 47, 1264–1272.

    Article  PubMed  Google Scholar 

  • Xue, Z., Shen, D., Davatzikos, C. (2006). Statistical representation of high-dimensional deformation fields with application to statistically constrained 3D warping. Med Image Anal, 10, 740–751.

    Google Scholar 

  • Yang, J., Shen, D., Davatzikos, C., Verma, R. (2008). Diffusion tensor image registration using tensor geometry and orientation features in medical image computing and computer-assisted intervention–MICCAI 2008, In. D. Metaxas, L. Axel, G. Fichtinger, G. Székely (Eds.), pp. 905-913. Berlin, Heidelberg: Springer.

  • Yap, P-T., Wu, G., Zhu, H., Lin, W., Shen, D. (2009). TIMER: Tensor image morphing for elastic registration. NeuroImage, 47, 549–563.

  • Yetkin, F. Z., Rosenberg, R. N., et al. (2006). FMRI of working memory in patients with mild cognitive impairment and probable Alzheimer's disease. European Radiology, 16, 193–206.

    Article  PubMed  Google Scholar 

  • Zacharaki, EI., Shen, D., Lee, S-k., Davatzikos, C. (2008). ORBIT: A multiresolution framework for deformable registration of brain tumor images. IEEE Trans Med Imaging, 27, 1003–1017.

    Google Scholar 

  • Zeng, L. L., Shen, H., et al. (2012). Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis. Brain, 135, 1498–1507.

    Article  PubMed  Google Scholar 

  • Zhang, D., Shen, D. (2012). Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease. NeuroImage, 59, 895–907.

  • Zhang, D., Shen, D., Alzheimer's Disease Neuroimaging I. (2012). Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers. PLoS ONE, 7, e33182.

  • Zhang, H. Y., Wang, S. J., et al. (2009). Detection of PCC functional connectivity characteristics in resting-state fMRI in mild Alzheimer's disease. Behavioural Brain Research, 197, 103–108.

    Article  PubMed  Google Scholar 

  • Zhang, D., Wang, Y. P., Zhou L. P., Yuan, H., Shen, D. G. (2011). Multimodal classification of Alzheimer’s disease and mild cognitive impairment. NeuroImage, 55, 856–867.

  • Zhou, Z. Y., Ding, M. Z., Chen, Y. H., Wright, P., Lu, Z. H., & Liu, Y. J. (2009). Detecting directional influence in fMRI connectivity analysis using PCA based Granger causality. Brain Research, 1289, 22–29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou, L., Wang, Y., Li, Y., Yap, P-T., Shen, D., and the Alzheimer's Disease Neuroimaging I. (2011). Hierarchical anatomical brain networks for MCI prediction: revisiting volumetric measures. PLoS ONE, 6, e21935.

  • Zhu, M., Gao, W., et al. (2012). Progression of Corpus Callosum atrophy in early stage of Alzheimer's disease: MRI based study. Academic Radiology, 19, 512–517.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH grants EB006733, EB008374, EB009634, AG041721, AG042599, NIA L30-AG029001, P30 AG028377-02, K23-AG028982, as well as National Alliance for Research in Schizophrenia and Depression Young Investigator Award (LW), Specialized Research Fund for the Doctoral Program of Higher Education (20131102120008), Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, and National Natural Science Foundation of China (81201049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinggang Shen.

Additional information

Yang Li and Chong-Yaw Wee co-first author

Appendix

Appendix

The forward Orthogonal Least Squares algorithm and Error Reduction Ratios

Here, a brief introduction of the OLS algorithm is given as follows. Due to the use of the linear polynomial model in Eq. (3), matrix X is often referred to as the regression matrix. This regression matrix X can be orthogonally decomposed as

$$ X= UV, $$
(7)

where V is an q × q unit upper triangular matrix and

$$ \mathrm{U}=\left[{u}_1,{u}_2,\cdots, {u}_n\right], $$
(8)

is a (N − q) × q matrix with orthogonal columns that satisfy

$$ {\mathrm{U}}^{\mathrm{T}}U=P, $$
(9)

and P is a positive diagonal matrix P = diag[p 1, p 2, ⋯, p d ] with p i  = u i , u i , where the symbol 〈⋅, ⋅ 〉 denotes the inner product of two vectors, i.e.,

$$ \left\langle {u}_i,{u}_i\right\rangle ={\displaystyle \sum_{t=1}^N}{u}_i(t){u}_i(t). $$
(10)

Equation (3) can now be expressed as

$$ Y=\left(X{V}^{-1}\right)\left( V\theta \right)+E=(U)\left( V\theta \right)+E= UG+E, $$
(11)

where G = [g 1, g 2, ⋯, g q ]T is an auxiliary parameter vector, which can be calculated directly from Y and U by means of the property of orthogonality as \( {g}_i=\frac{\left\langle Y,{u}_i\right\rangle }{\left\langle {u}_i,{u}_i\right\rangle },i=1,2,\cdots, q \).

Rewrite Eq. (11) as

$$ Y={\displaystyle \sum_i^q{u}_i{g}_i+E,} $$
(12)

and calculate the inner product u i , Y, by substituting Y by Eq. (12), as

$$ \left\langle {u}_i,Y\right\rangle =\left\langle {u}_i,{\displaystyle \sum_{i=1}^q}{u}_i{g}_i\right\rangle ={\displaystyle \sum_{i=1}^q}\left\langle {u}_i,{u}_i{g}_i\right\rangle ={g}_i\left\langle {u}_i,{u}_i\right\rangle, $$
(13)

Calculate the inner product Y, Y from the Eq. (12)

$$ \left\langle Y,Y\right\rangle =\left\langle {\displaystyle \sum_{i=1}^q}{u}_i{g}_i,Y\right\rangle ={\displaystyle \sum_{i=1}^q}\left\langle {u}_i{g}_i,Y\right\rangle ={\displaystyle \sum_{i=1}^q}{g}_i^2\left\langle {u}_i,{u}_i\right\rangle, $$
(14)

Dividing both sides of Eq. (14) by Y, Y, then yields

$$ 1={\displaystyle \sum_{i=1}^q}\frac{g_i^2\left\langle {u}_i,{u}_i\right\rangle }{\left\langle Y,Y\right\rangle }, $$
(15)

The error reduction ratio ERR i due to u i can be presented by

$$ ER{R}_i=\frac{g_i^2\left\langle {u}_i,{u}_i\right\rangle }{\left\langle Y,Y\right\rangle }, $$
(16)

The error reduction ratio often provides a simple and effective means for selecting a subset of significant terms from a large number of candidate terms in a forward regression manner. A term can be selected if it produces the largest value of ERR i among the rest of the candidate terms. The selection procedure will be terminated when

$$ 1-{\displaystyle \sum_{i=1}^{q_0}} ER{R}_i<\varepsilon, $$
(17)

where ε is a desired tolerance, and this leads only to a subset model of q 0 terms (q 0 ≪ q). The detailed procedure for derivation can be seen from Billings et al. (1989).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Wee, CY., Jie, B. et al. Sparse Multivariate Autoregressive Modeling for Mild Cognitive Impairment Classification. Neuroinform 12, 455–469 (2014). https://doi.org/10.1007/s12021-014-9221-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-014-9221-x

Keywords

Navigation