Skip to main content
Log in

Donor Mesenchymal Stromal Cells (MSCs) Undergo Variable Cardiac Reprogramming in Vivo and Predominantly Co-Express Cardiac and Stromal Determinants after Experimental Acute Myocardial Infarction

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

We previously showed the emergence of predominantly non-fused murine cells co-expressing cardiac and stromal determinants in co-cultures of murine mesenchymal stromal cells (MSCs) and rat embryonic cardiomyocytes. To determine whether a similar phenotype is detectable in vivo in ischemic myocardium, we infused green fluorescence protein (GFP)-marked MSCs intravenously into wild-type mice in an acute myocardial infarction (AMI) model generated by ischemia/reperfusion (I/R) or fixed coronary artery ligation. We found that infused GFP+ cells were confined strictly to ischemic areas and represented approximately 10 % of total cellularity. We showed that over 60 % of the cells co-expressed collagen type IV and troponin T or myosin heavy chain, characteristic of MSCs and cardiomyocytes, respectively, and were CD45(-). Nonetheless, up to 25 % of the GFP+ donor cells expressed one of two cardiomyocyte markers, either myosin heavy chain or troponin T, in the absence of MSC determinants. We also observed a marked reduction in OCT4 expression in MSCs pre-infusion compared with those lodged in the myocardium, suggesting reduced stem cell properties. Despite the low frequency of lodged donor MSCs, left-ventricular end-diastolic pressure was significantly better in experimental versus saline animals for both AMI (12.10 ± 1.81 vs. 20.50 ± 1.53 mmHg, p < 0.001) and I/R models (8.75 ± 2.95 vs. 17.53 ± 3.85 mmHg, p = 0.004) when measured 21 days after MSC infusion and is consistent with a paracrine effect. Our data indicate that donor MSCs undergo variable degrees of cardiomyocyte reprogramming with the majority co-expressing cardiomyocyte and stromal markers. Further studies are needed to elucidate the factors mediating the extent of cardiomyocyte reprogramming and importance of the cellular changes on tissue repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lloyd-Jones, D., Adams, R., Carnethon, M., et al. (2009). Heart disease and stroke statistics–2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation, 119, 480–486.

    Article  PubMed  Google Scholar 

  2. Hare, J. M., Fishman, J. E., Gerstenblith, G., et al. (2012). Comparison of allogeneic vs autologous bone marrow–derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA, 308, 2369–2379.

    Article  PubMed  CAS  Google Scholar 

  3. Psaltis, P. J., Zannettino, A. C., Worthley, S. G., & Gronthos, S. (2008). Concise review: mesenchymal stromal cells: potential for cardiovascular repair. Stem Cells, 26, 2201–2210.

    Article  PubMed  Google Scholar 

  4. Li, X., Yu, X., Lin, Q., et al. (2007). Bone marrow mesenchymal stem cells differentiate into functional cardiac phenotypes by cardiac microenvironment. Journal of Molecular and Cellular Cardiology, 42, 295–303.

    Article  PubMed  CAS  Google Scholar 

  5. Makino, S., Fukuda, K., Miyoshi, S., et al. (1999). Cardiomyocytes can be generated from marrow stromal cells in vitro. Journal of Clinical Investigation, 103, 697–705.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Shim, W. S., Jiang, S., Wong, P., et al. (2004). Ex vivo differentiation of human adult bone marrow stem cells into cardiomyocyte-like cells. Biochemical and Biophysical Research Communications, 324, 481–488.

    Article  PubMed  CAS  Google Scholar 

  7. Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J., & Kessler, P. D. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105, 93–98.

    Article  PubMed  Google Scholar 

  8. Tomita, S., Li, R. K., Weisel, R. D., et al. (1999). Autologous transplantation of bone marrow cells improves damaged heart function. Circulation, 100, II247–II256.

    Article  PubMed  CAS  Google Scholar 

  9. Keating, A. (2005). Bone marrow cells for cardiac repair. Biology of Blood and Marrow Transplantation, 11, 2–6.

    Article  PubMed  Google Scholar 

  10. Hale, S. L., Dai, W., Dow, J. S., & Kloner, R. A. (2008). Mesenchymal stem cell administration at coronary artery reperfusion in the rat by two delivery routes: a quantitative assessment. Life Sciences, 83, 511–515.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Dayan, V., Yannarelli, G., Billia, F., et al. (2011). Mesenchymal stromal cells mediate a switch to alternatively activated monocytes/macrophages after acute myocardial infarction. Basic Research in Cardiology, 106, 1299–1310.

    Article  PubMed  CAS  Google Scholar 

  12. Fazel, S., Cimini, M., Chen, L., et al. (2006). Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. Journal of Clinical Investigation, 116, 1865–1877.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Gallo, M. P., Ramella, R., Alloatti, G., et al. (2007). Limited plasticity of mesenchymal stem cells cocultured with adult cardiomyocytes. Journal of Cellular Biochemistry, 100, 86–99.

    Article  PubMed  CAS  Google Scholar 

  14. Lee, R. H., Pulin, A. A., Seo, M. J., et al. (2009). Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell, 5, 54–63.

    Article  PubMed  CAS  Google Scholar 

  15. Mirotsou, M., Zhang, Z., Deb, A., et al. (2007). Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proceedings of the National Academy of Sciences of the United States of America, 104, 1643–1648.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Noiseux, N., Gnecchi, M., Lopez-Ilasaca, M., et al. (2006). Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Molecular Therapy, 14, 840–850.

    Article  PubMed  CAS  Google Scholar 

  17. Yannarelli, G., Dayan, V., Pacienza, N., et al. (2013). Human umbilical cord perivascular cells exhibit enhanced cardiomyocyte reprogramming and cardiac function after experimental acute myocardial infarction. Cell Transplantation, 22, 1651–1666. doi:10.3727/096368912X657675.

    Google Scholar 

  18. Rose, R. A., Jiang, H., Wang, X., et al. (2008). Bone marrow-derived mesenchymal stromal cells express cardiac-specific markers, retain the stromal phenotype, and do not become functional cardiomyocytes in vitro. Stem Cells, 26, 2884–2892.

    Article  PubMed  CAS  Google Scholar 

  19. Kasper, G., Dankert, N., Tuischer, J., et al. (2007). Mesenchymal stem cells regulate angiogenesis according to their mechanical environment. Stem Cells, 25, 903–910.

    Article  PubMed  CAS  Google Scholar 

  20. Bartunek, J., Croissant, J. D., Wijns, W., et al. (2007). Pretreatment of adult bone marrow mesenchymal stem cells with cardiomyogenic growth factors and repair of the chronically infarcted myocardium. American Journal of Physiology - Heart and Circulatory Physiology, 292, H1095–H1104.

    Article  PubMed  CAS  Google Scholar 

  21. Behfar, A., Yamada, S., Crespo-Diaz, R., et al. (2010). Guided cardiopoiesis enhances therapeutic benefit of bone marrow human mesenchymal stem cells in chronic myocardial infarction. Journal of the American College of Cardiology, 56, 721–734.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Okura, H., Matsuyama, A., Lee, C. M., et al. (2010). Cardiomyoblast-like cells differentiated from human adipose tissue-derived mesenchymal stem cells improve left ventricular dysfunction and survival in a rat myocardial infarction model. Tissue Engineering. Part C, Methods, 16, 417–425.

    Article  PubMed  CAS  Google Scholar 

  23. Potapova, I. A., Doronin, S. V., Kelly, D. J., et al. (2008). Enhanced recovery of mechanical function in the canine heart by seeding an extracellular matrix patch with mesenchymal stem cells committed to a cardiac lineage. American Journal of Physiology - Heart and Circulatory Physiology, 295, H2257–H2263.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Yoon, J., Min, B. G., Kim, Y. H., Shim, W. J., Ro, Y. M., & Lim, D. S. (2005). Differentiation, engraftment and functional effects of pre-treated mesenchymal stem cells in a rat myocardial infarct model. Acta Cardiologica, 60, 277–284.

    Article  PubMed  Google Scholar 

  25. Bubnic, S. J., Wang, X. H., Clark, B. R., & Keating, A. (2002). W/Wv marrow stromal cells engraft and enhance early erythropoietic progenitors in unconditioned Sl/Sld murine recipients. Bone Marrow Transplantation, 30, 867–872.

    Article  PubMed  CAS  Google Scholar 

  26. Desjardins, J. F., Pourdjabbar, A., Quan, A., et al. (2009). Lack of S100A1 in mice confers a gender-dependent hypertensive phenotype and increased mortality after myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 296, H1457–H1465.

    Article  PubMed  CAS  Google Scholar 

  27. Tsoporis, J. N., Marks, A., Haddad, A., Dawood, F., Liu, P. P., & Parker, T. G. (2005). S100B expression modulates left ventricular remodeling after myocardial infarction in mice. Circulation, 111, 598–606.

    Article  PubMed  CAS  Google Scholar 

  28. Liedtke, S., Enczmann, J., Waclawczyk, S., Wernet, P., & Kögler, G. (2007). Oct4 and its pseudogenes confuse stem cell research. Cell Stem Cell, 1, 364–366.

    Article  PubMed  CAS  Google Scholar 

  29. Maniatis, T., Sambrook, J., & Fritsch, E. F. (1989). Molecular Cloning: A Laboratory Manual (2nd ed., pp. 18.38–18.39). New York: Cold Spring Harbour Laboratory Press.

    Google Scholar 

  30. Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315–317.

    Article  PubMed  CAS  Google Scholar 

  31. Keating, A. (2012). Mesenchymal stromal cells: new directions. Cell Stem Cell, 10, 709–716.

    Article  PubMed  CAS  Google Scholar 

  32. Jackson, K. A., Majka, S. M., Wang, H., et al. (2001). Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. Journal of Clinical Investigation, 107, 1395–1402.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Orlic, D., Kajstura, J., Chimenti, S., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410, 701–705.

    Article  PubMed  CAS  Google Scholar 

  34. Orlic, D., Kajstura, J., Chimenti, S., et al. (2001). Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proceedings of the National Academy of Sciences of the United States of America, 98, 10344–10349.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Yeh, E. T., Zhang, S., Wu, H. D., Körbling, M., Willerson, J. T., & Estrov, Z. (2003). Transdifferentiation of human peripheral blood CD34+-enriched cell population into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo. Circulation, 108, 2070–2073.

    Article  PubMed  Google Scholar 

  36. Martin-Rendon, E., Brunskill, S. J., Hyde, C. J., Stanworth, S. J., Mathur, A., & Watt, S. M. (2008). Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. European Heart Journal, 29, 1807–1818.

    Article  PubMed  CAS  Google Scholar 

  37. Balsam, L. B., Wagers, A. J., Christensen, J. L., Kofidis, T., Weissman, I. L., & Robbins, R. C. (2004). Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature, 428, 668–673.

    Article  PubMed  CAS  Google Scholar 

  38. Murry, C. E., Soonpaa, M. H., Reinecke, H., et al. (2004). Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature, 428, 664–668.

    Article  PubMed  CAS  Google Scholar 

  39. Ohtsuka, S., & Dalton, S. (2008). Molecular and biological properties of pluripotent embryonic stem cells. Gene Therapy, 15, 74–81.

    Article  PubMed  CAS  Google Scholar 

  40. Silva, J., & Smith, A. (2008). Capturing pluripotency. Cell, 132, 532–536.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Camara-Clayette, V., Le Pesteur, F., Vainchenker, W., & Sainteny, F. (2006). Quantitative Oct4 overproduction in mouse embryonic stem cells results in prolonged mesoderm commitment during hematopoietic differentiation in vitro. Stem Cells, 24, 1937–1945.

    Article  PubMed  CAS  Google Scholar 

  42. Niwa, H., Miyazaki, J., & Smith, A. G. (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genetics, 24, 372–376.

    Article  PubMed  CAS  Google Scholar 

  43. Greco, S. J., Liu, K., & Rameshwar, P. (2007). Functional similarities among genes regulated by OCT4 in human mesenchymal and embryonic stem cells. Stem Cells, 25, 3143–3154.

    Article  PubMed  CAS  Google Scholar 

  44. Ramkisoensing, A. A., Pijnappels, D. A., Askar, S. F., et al. (2011). Human embryonic and fetal mesenchymal stem cells differentiate toward three different cardiac lineages in contrast to their adult counterparts. PLoS One, 6, e24164.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Huijie Xiang, University Health Network for outstanding technical assistance, to Qi-Long Yi (Biostatistics Department, Princess Margaret Hospital/Ontario Cancer Institute) for assistance in statistical analysis and to Ye Yang, Department of Pathology, University Health Network for technical assistance in preparation of histological sections. A.K holds the Gloria and Seymour Epstein Chair in Cell Therapy and Transplantation at the University Health Network and the University of Toronto.

Author Contributions

Conceived and designed the experiments: GY, JNT, AK. Performed the experiments: GY, JNT, JFD, XHW, AP. Analyzed the data: GY, JNT. Contributed reagents/materials/analysis tools: SV, TGP, AK. Wrote the paper: GY, JNT, SV, AK.

Conflict of Interest

The authors declare that they have no competing interests.

Funding

This work was supported by the Orsino Translational Research Laboratory, PMH. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armand Keating.

Additional information

Gustavo Yannarelli and James N. Tsoporis contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1389 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yannarelli, G., Tsoporis, J.N., Desjardins, JF. et al. Donor Mesenchymal Stromal Cells (MSCs) Undergo Variable Cardiac Reprogramming in Vivo and Predominantly Co-Express Cardiac and Stromal Determinants after Experimental Acute Myocardial Infarction. Stem Cell Rev and Rep 10, 304–315 (2014). https://doi.org/10.1007/s12015-013-9483-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-013-9483-y

Keywords

Navigation