Skip to main content
Log in

Low Intensity Electromagnetic Irradiation with 70.6 and 73 GHz Frequencies Affects Escherichia coli Growth and Changes Water Properties

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The low intensity electromagnetic irradiation (EMI) of the 70.6 and 73 GHz frequency is resonant for Escherichia coli but not for water. In this study, E. coli irradiation with this EMI during 1 h directly and in bi-distilled water or in the assay buffer with those frequencies resulted with noticeable changes in bacterial growth parameters. Furthermore, after EMI, 2 h rest of bacteria renewed their growth in 1.2-fold, but repeated EMI—had no significant action. Moreover, water absorbance, pH, and electric conductance were changed markedly after such irradiation. The results point out that EMI of the 70.6 and 73 GHz frequency can interact with bacteria affecting growth and in the same time with the surrounding medium (water) as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pakhomov, A., Yahya, A., Pakhomova, O., Stuck, B., & Murphy, M. (1998). Current state and implications of research on biological effects of millimeter waves. Bioelectromagnetics, 19, 393–413.

    Article  PubMed  CAS  Google Scholar 

  2. Betskii, O., Devyatkov, N., & Kislov, V. (2000). Low intensity millimeter waves in medicine and biology. Critical Reviews in Biomedical Engineering, 28, 247–268.

    PubMed  CAS  Google Scholar 

  3. Trushin, M. (2003). The possible role of electromagnetic fields in bacterial communication. Journal of Microbiology, Immunology and Infection, 36, 153–160.

    Google Scholar 

  4. Trchounian, A., Ogandzhanyan, E., Sarkisyan, E., Gonyan, S., Oganesyan, A., & Oganesyan, S. (2001). Membranotropic effects of electromagnetic irradiation of extremely high frequency in Escherichia coli. Biophysics, 46, 69–76. (in Russian).

    Google Scholar 

  5. Tambiev, A., Kirikova, N., & Luk’yanov, A. (2002). Application of active frequencies of electromagnetic irradiation of the millimeter-wave and centimeter-wave bands in microbiology. Naukoyomkie Tekhnologii, 1, 34–53. (in Russian).

    Google Scholar 

  6. Isakhanyan, V., & Trchounian, A. (2005). Indirect and repeated electromagnetic irradiation with extremely high frequency of bacteria Escherichia coli. Biophysics, 50, 604–606. (in Russian).

    Google Scholar 

  7. Novoselova, E., Glushkova, O., Sinotova, O., & Fesenko, E. (2005). Stress response of the cell to exposure to ultraweak electromagnetic irradiation. Doklady Russian Academy of Sciences, 401, 117–119. (in Russian).

    Google Scholar 

  8. Tadevosyan, H., Kalantaryan, V., Trchounian, A. (2006). Direct and mediated effects of the extremely high frequency coherent electromagnetic radiation (millimeter waves) with low intensity on bacteria. In Proceedings of biological effects of EMFs, Crete, Greece (pp. 1307–1314).

  9. Drokina, T., Lisin, V., Popova, L., Balandina, A., & Bitekhtina, M. (2006). The NMR investigation of the electromagnetic irradiation effects on bacteria. Physics of Metals and Metallography, 102, S96–S97.

    Article  Google Scholar 

  10. Cohen, I., Cahan, R., Shani, G., Cohen, E., & Abramovich, A. (2010). Effect of 99 GHz continuous millimeter wave electro-magnetic radiation on E. coli viability and metabolic activity. International Journal of Radiation Biology, 86, 390–399.

    Article  PubMed  CAS  Google Scholar 

  11. Tadevosyan, H., Kalantaryan, V., & Trchounian, A. (2007). The effects of electromagnetic irradiation of extremely high frequency and low intensity on the growth rate of Escherichia coli and the role of medium pH. Biophysics, 52, 893–898. (in Russian).

    CAS  Google Scholar 

  12. Belyaev, I. (2005). Non-thermal biological effects of microwaves: Current knowledge, further perspective, and urgent needs. Electromagnetic Biology and Medicine, 24, 375–403.

    Article  CAS  Google Scholar 

  13. Devyatkov, N., Golant, M., & Betski, O. (1991). Acoustoelectric waves in cell membranes and their resonances. In Millimeter waves and their role in life processes. Moscow: Radio i svjaz. (in Russian).

  14. Tadevosyan, H., Kalantaryan, V., & Trchounian, A. (2008). Extremely high frequency electromagnetic radiation enforces bacterial effects of inhibitors and antibiotics. Cell Biochemistry and Biophysics, 51, 97–103.

    Article  PubMed  CAS  Google Scholar 

  15. Tadevosyan, H., & Trchounian, A. (2009). Effect of coherent extremely high-frequency and low-intensity electromagnetic irradiation on the activity of membrane systems of Escherichia coli bacteria. Biophysics, 54, 1055–1059. (in Russian).

    CAS  Google Scholar 

  16. Fesenko, E., Geletyuk, V., Kazachenko, V., & Chemeris, N. (1995). Preliminary microwave irradiation of water solutions changes their channel-modifying activity. FEBS Letters, 366, 49–52.

    Article  PubMed  CAS  Google Scholar 

  17. Sinitsyn, N., Petrosyan, V., Yolkin, V., Devyatkov, N., Gulyaev, Yu., & Betskii, O. (2000). Special function of the ‘‘millimeter wavelength waves-aqueous medium ‘‘system in nature. Critical Reviews in Biomedical Engineering, 28, 269–305.

    PubMed  CAS  Google Scholar 

  18. Dardalhon, M., Averbeck, D., & Berteaud, A. (1981). Studies on possible genetic effects of microwaves in procaryotic and eucaryotic cells. Radiation and Environmental Biophysics, 20, 37–51.

    Article  PubMed  CAS  Google Scholar 

  19. Belyaev, I., Shcheglov, V., Alipov, Y., & Polunin, V. (1996). Resonance effect of millimeter waves in the power range from 10(−19) to 3 × 10(−3) W/cm2 on Escherichia coli cells at different concentrations. Bioelectromagnetics, 17, 312–321.

    Article  PubMed  CAS  Google Scholar 

  20. Lukashevsky, K., & Belyaev, I. (1990). Switching of prophage λ genes in E. coli by millimeter waves. Medical Science Research, 18, 955–957. (in Russian).

    Google Scholar 

  21. Belyaev, I., Alipov, Y., Polunin, V., & Shcheglov, V. (1993). Evidence for dependence of resonant- frequency of millimeter-wave interaction with Escherichia coli Kl2 cells on haploid genome length. Electro- and Magnetobiology, 12, 39–49.

    Google Scholar 

  22. Golant, M. (1989). Resonance effect of coherent millimeter-band electromagnetic waves on living organisms. Biophysics, 34, 1004–1014. (in Russian).

    CAS  Google Scholar 

  23. Guofen, Yu., Coln, E., Schoenbach, K., Gellerman, M., Fox, P., Rec, L., et al. (2002). A study on biological effects of low-intensity millimeter waves. IEEE Transactions on Plasma Science, 30, 1489–1496.

    Article  Google Scholar 

  24. Zakharyan, E., & Trchounian, A. (2001). K+ influx by Kup in Escherichia coli is accompanied by a decrease in H+ efflux. FEMS Microbiology Letters, 204, 61–64.

    Article  PubMed  CAS  Google Scholar 

  25. Kirakosyan, G., Bagramyan, K., & Trchounian, A. (2004). Redox sensing by Escherichia coli: effects of dithiothreitol, a redox reagent reducing disulphides, on bacterial growth. Biochemical and Biophysical Research Communications, 325, 803–806.

    Article  PubMed  CAS  Google Scholar 

  26. Mirzoyan, N., Pepoyan, A., & Trchounian, A. (2006). Modification of the biophysical characteristics of membranes in commensal Escherichia coli strains from breast cancer patients. FEMS Microbiology Letters, 254, 81–86.

    Article  PubMed  CAS  Google Scholar 

  27. Kirakosyan, G., Trchounian, K., Vardanyan, Z., & Trchounian, A. (2008). Copper (II) Ions affect Escherichia coli membrane vesicles’ SH-groups and a disulfide-dithiol interchange between membrane proteins. Cell Biochemistry and Biophysics, 51, 45–50.

    Article  PubMed  CAS  Google Scholar 

  28. Halliday, E., Griffith, J., & Gast, R. (2010). Use of an exogenous plasmid standard and quantitative PCR to monitor spatial and temporal distribution of Enterococcus spp in beach sands. Limnology and Oceanography: Methods, 8, 146–154.

    Article  CAS  Google Scholar 

  29. Lakin, G. (1992). Biometry. Moscow: Vishaya Shkola. (in Russian).

    Google Scholar 

  30. Akopyan, K., & Trchounian, A. (2006). Escherichia coli membrane proton conductance and proton efflux depend on growth pH and are sensitive to osmotic stress. Cell Biochemistry and Biophysics, 46, 201–208.

    Article  PubMed  CAS  Google Scholar 

  31. Golovleva, V., Kopylova, T., Levdikova, T., & Tsyganok, Yu. (1997). Change in the electrophysical properties of water by microwave radiation. Russian Physics Journal, 40, 327–331.

    Article  CAS  Google Scholar 

  32. Gapochka, L., Gapochka, M., Korolev, A., Kostienko, A., Sukhorukov, A., & Timoshkin, I. (1994). Influence of electromagnetic irradiation of extremely and super high frequencies on liquid water. Moscow University News Series 3, Fizika Astronomiya, 35, 71–76. (in Russian).

    CAS  Google Scholar 

  33. Yemets, B. (2001). On mechanism of influence of low intense millimeter waves on air content in water. International Journal of Infrared and Millimeter Waves, 22, 639–643.

    Article  Google Scholar 

  34. Trchounian, A. (2009). In Bacterial Membranes. Ultrastructure, Bioelectrochemistry, Bioenergetics and Biophysics (pp. 113–165). Trivandrum (India): Research Signpost.

  35. Neshev, N., & Kirilova, E. (1994). Possible non-thermal influence of millimeter waves on proton transfer in biomembranes. Electro- and Magnetobiology, 13, 191–194.

    Google Scholar 

  36. Logani, M., & Ziskin, M. (1996). Millimeter-wave radiation has no effect on lipid peroxidation in liposomes. Radiation Research, 145, 231–235.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was done within the framework supported by Ministry of Education and Science of the Republic of Armenia (Grant # 1012-2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armen Trchounian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torgomyan, H., Kalantaryan, V. & Trchounian, A. Low Intensity Electromagnetic Irradiation with 70.6 and 73 GHz Frequencies Affects Escherichia coli Growth and Changes Water Properties. Cell Biochem Biophys 60, 275–281 (2011). https://doi.org/10.1007/s12013-010-9150-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-010-9150-8

Keywords

Navigation