Skip to main content
Log in

Inhibition of Fungi and Gram-Negative Bacteria by Bacteriocin BacTN635 Produced by Lactobacillus plantarum sp. TN635

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate 54 lactic acid bacteria (LAB) strains isolated from meat, fermented vegetables and dairy products for their capacity to produce antimicrobial activities against several bacteria and fungi. The strain designed TN635 has been selected for advanced studies. The supernatant culture of this strain inhibits the growth of all tested pathogenic including the four Gram-negative bacteria (Salmonella enterica ATCC43972, Pseudomonas aeruginosa ATCC 49189, Hafnia sp. and Serratia sp.) and the pathogenic fungus Candida tropicalis R2 CIP203. Based on the nucleotide sequence of the 16S rRNA gene of the strain TN635 (1,540 pb accession no FN252881) and the phylogenetic analysis, we propose the assignment of our new isolate bacterium as Lactobacillus plantarum sp. TN635 strain. Its antimicrobial compound was determined as a proteinaceous substance, stable to heat and to treatment with surfactants and organic solvents. Highest antimicrobial activity was found between pH 3 and 11 with an optimum at pH = 7. The BacTN635 was purified to homogeneity by a four-step protocol involving ammonium sulfate precipitation, centrifugal microconcentrators with a 10-kDa membrane cutoff, gel filtration Sephadex G-25, and C18 reverse-phase HPLC. SDS-PAGE analysis of the purified BacTN635, revealed a single band with an estimated molecular mass of approximately 4 kDa. The maximum bacteriocin production (5,000 AU/ml) was recorded after a 16-h incubation in Man, Rogosa, and Sharpe (MRS) medium at 30 °C. The mode of action of the partial purified BacTN635 was identified as bactericidal against Listeria ivanovii BUG 496 and as fungistatic against C. tropicalis R2 CIP203.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alisky, J., Iczkowski, K., Rapoport, A., & Troitsky, N. (1998). Journal of Infection, 36, 5–15.

    Article  CAS  Google Scholar 

  2. Macfarlane, G. T., & Cummings, J. H. (2002). Current Opinion in Infectious Diseases, 15, 501–506.

    CAS  Google Scholar 

  3. Papagianni, M. (2003). Biotechnology Advances, 21, 465–499.

    Article  CAS  Google Scholar 

  4. Twomey, D., Ross, R. P., Ryan, M., Meaney, B., & Hill, C. (2002). Antonie Van Leeuwenhoek, 82, 165–18.

    Article  CAS  Google Scholar 

  5. Brooks, G. F., Butel, J. S., & Morse, S. A. (1998). Jawetz, Melnick, and Adelberg’s medical microbiology (p. 269). Upper Saddle River, New Jersey, USA: Appleton & Lange.

    Google Scholar 

  6. Settanni, L., & Corsetti, A. (2008). International Journal of Food Microbiology, 121, 123–138.

    Article  CAS  Google Scholar 

  7. Nawaz, S. K., Riaz, S., Riaz, S., & Hasnain, S. (2009). African. J. Biotechnol., 8, 365–368.

    Google Scholar 

  8. Hammami, I., Rhouma, A., Jaouadi, B., Rebai, A., & Nesme, X. (2009). Letters in Applied Microbiology, 48, 253–260.

    Article  CAS  Google Scholar 

  9. Diop, M. B., Dubois-Dauphin, R., Tine, E., Ngom, A., Destain, J., & Thonart, P. (2007). Biotechnology, Agronomy, Society and Environment, 11, 275–281.

    CAS  Google Scholar 

  10. Paul, R. R., Morgan, S., & Hill, C. (2002). International Journal of Food Microbiology, 79, 3–16.

    Article  Google Scholar 

  11. Messi, P., Bondi, M., Sabia, C., Battini, R., & Manicardi, G. (2001). International Journal of Food Microbiology, 64, 193–198.

    Article  CAS  Google Scholar 

  12. Todorov, S. D., & Dicks, L. M. (2004). Journal of Basic Microbiology, 44, 305–316.

    Article  CAS  Google Scholar 

  13. Todorov, S. D., & Dicks, L. M. (2005). Enzyme and Microbial Technology, 36, 318–326.

    Article  CAS  Google Scholar 

  14. Todorov, S. D., Nyati, H., Meincken, M., & Dicks, L. M. T. (2007). Food Control, 18, 656–664.

    Article  CAS  Google Scholar 

  15. Hanahan, D. (1983). Journal of Molecular Biology, 16, 557–580.

    Article  Google Scholar 

  16. Janssen, G. R., & Bibb, M. J. (1993). Gene, 124, 133–134.

    Article  CAS  Google Scholar 

  17. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual (2nd ed.). New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  18. Leenhouts, K. J., Kok, J., & Venema, G. (1990). Applied and Environmental Microbiology, 56, 2726–2735.

    CAS  Google Scholar 

  19. Lee, C. M., Sieo, C. C., Abdullah, N., & Ho, Y. W. (2008). FEMS Microbiology Letters, 287, 136–141.

    Article  CAS  Google Scholar 

  20. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). Nucleic Acids Research, 22, 4673–4680.

    Article  CAS  Google Scholar 

  21. Felsenstein, J. (1989). PHYLIP-Phylogeny Inference Package, version 3.2. Cladistics, 5, 164–166.

    Google Scholar 

  22. Saitou, N., & Nei, M. (1987). Molecular Biology and Evolution, 4, 406–425.

    CAS  Google Scholar 

  23. Tagg, J. R., & McGiven, A. R. (1971). Applied Microbiology, 21, 943.

    CAS  Google Scholar 

  24. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  25. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  26. Karunasagar, I., Krohne, G., & Goebel, W. (1993). Infection and Immunity, 61, 162–169.

    CAS  Google Scholar 

  27. Atanassova, V., Meindl, A., & Ring, C. (2001). International Journal of Food Microbiology, 68, 105–113.

    Article  CAS  Google Scholar 

  28. Aktypis, A., Kalantzopoulos, G., Huis IN’T Veld, J. H. J., & Ten Brink, B. (1998). Journal of Applied Microbiology, 84, 568–576.

    Article  CAS  Google Scholar 

  29. Lavermicocca, P., Valerio, F., Evidente, A., Lazzaroni, S., Corsetti, A., & Gobbetti, M. (2000). Applied and Environmental Microbiology, 66, 4084–4090.

    Article  CAS  Google Scholar 

  30. Atanassova, M., Choiset, Y., Dalgalarrond, D., Chobert, J. M., Dousset, X., Ivanova, I., et al. (2003). International Journal of Food Microbiology, 8, 63–73.

    Article  Google Scholar 

  31. Erich, L., & Martin, J. (1997). Antimicrobial food additives, characteristics, uses, effects (2nd Ed.). Translated by S.F. Laichena Berlin: Springer.

  32. Wiblin, R. T. (1997). Nosocomial pneumonia. In R. P. Wenzel (Ed.), Prevention and control of nosocomial infections (3rd ed., pp. 807–819). Baltimore: Williams and Wilkins.

    Google Scholar 

  33. Kobayashi, H., Matsuda, K., Ikeda, T., Suzuki, M., Takahashi, S., Suzuki, A., et al. (1994). Infection and Immunity, 62, 615–622.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Tunisian government (Contract Program CBS-LEMP) and the CMCU project (2006-2008) No 06/S 0901 “MELLOULI/AIGLE”. We are grateful to Dr. M. Ferchichi for providing the indicator bacteria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lotfi Mellouli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smaoui, S., Elleuch, L., Bejar, W. et al. Inhibition of Fungi and Gram-Negative Bacteria by Bacteriocin BacTN635 Produced by Lactobacillus plantarum sp. TN635. Appl Biochem Biotechnol 162, 1132–1146 (2010). https://doi.org/10.1007/s12010-009-8821-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8821-7

Keywords

Navigation