Skip to main content
Log in

Overproduction of Laccase and Pectinase by Microbial Associations in Solid Substrate Fermentation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The growth and the enzymatic production of two microbial fungal associations were studied: Aspergillus niger and Fusarium moniliforme and Trametes versicolor and Aspergillus niger. The synergistic interrelations between the species of the first mixed culture increased the biosynthesis of α-amylase and pectinase. T. versicolor and A. niger proved to be compatible partners in the overproduction of the enzyme laccase, whose synthesis surpassed 8.4 times the enzymatic level in the monoculture, with both of the mixed microbial populations cocultivation facilitating the amplified synthesis of enzymes rather than their growth acceleration. A further proof of the presence of synergism established by the cultures was the enzyme volumetric productivities in both of the mixed microbial cultures, which increased parallel to the rise in the combined biomass synthesis. The competent selection of compatible partners can adjust the desired enzymatic levels and compositions in mixed fungal systems aimed at a number of specified designations. Thus, a very high level of laccase production (97,600 IU/g dry weight) was achieved. The chosen fungal strains produce a variety of different enzymes, but first microbial association produces mainly amylase and pectinase, necessary for their growth, and second association produces mainly laccase and pectinase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Salmon, I., & Bull, A. T. (1984). In Klug, M. J. & Reddy, C.A. (Eds.), Current perspectives in microbial ecology (pp. 656–662). Washington, DC: ASM.

    Google Scholar 

  2. Castillo, M. R., Gutierrez-Correa, M., Linden, J. C., & Tengerdy, R. P. (1994). Biotechnology Letters, 16(9), 967–972.

    Article  CAS  Google Scholar 

  3. Dueñas, R., Tengerdy, R. P., & Gutierrez-Correa, M. (1995). World Journal of Microbiology & Biotechnology, 11, 333–337.

    Article  Google Scholar 

  4. Gutierrez-Correa, M., & Tengerdy, R. P. (1997). Biotechnology Letters, 19(7), 665–667.

    Article  CAS  Google Scholar 

  5. Gutierrez-Correa, M., Portal, L., Moreno, P., & Tengerdy, R. P. (1998). Bioresource Technology, 68(2), 173–178.

    Article  Google Scholar 

  6. Abate, C. M., Castro, G. R., Siñeriz, F., & Callieri, D. A. S. (1999). Biotechnology Letters, 21, 249–252.

    Article  CAS  Google Scholar 

  7. Öngen-Baysal, G., & Sukan, S. S. (1996). Biotechnology Letters, 18(12), 1431–1434.

    Article  Google Scholar 

  8. Ramachandran, S., Roopesh, K., Nampoothiri, M., Szakacs, G., & Pandey, A. (2005). Process Biochemistry, 40(5), 1749–1754.

    Article  CAS  Google Scholar 

  9. Heinzkill, M., Bech, L., Halkier, T., Schneider, P., & Anke, T. (1998). Applied and Environmental Microbiology, 64, 1601–1606.

    CAS  Google Scholar 

  10. Xavier, A. M. R. B., Evtuguin, D. V., Ferreira, R. M. P., & Amado, F. L. (2001) Proceedings 8th International Conference in Biotechnology, Helsinki, Finland, pp. 102–106.

  11. Lee, I.-Y., Jung, K.-H., Lee, C.-H., & Park T.-H. (1999). Biotechnology Letters, 21, 965–968.

    Article  CAS  Google Scholar 

  12. Lu, S. X. F., Jones, C. L., & Lonergan, G. T. (1996). Proceedings of the 10th International Biotechnology Symposium, Sydney, Australia, pp. 223–230.

  13. Palmieri, G., Giardina, P., Bianco, A., Capasso, A., & Sannia, G. (1997). Journal of Biological Chemistry, 272, 31301–31307.

    Article  CAS  Google Scholar 

  14. Sakurai, Y., Lee, T. H., & Siota, H. (1976). Agricultural and Biological Chemistry, 24, 619–624.

    Google Scholar 

  15. Mandels, M., Sternberd, D., & Andreoti, R. E. (1975). In Bailey, M., Enari, T.M., & Linko, M. (Eds.), Proceedings of the Symposium on Enzymatic Hydrolysis of Cellulose (pp. 81–109). Helsinki: SITRA.

  16. Riou, C., Salmon, J. M., Vallier, M. J., Günata, Z., & Barre, P. (1998). Applied and Environmental Microbiology, 64(10), 3607–3614.

    CAS  Google Scholar 

  17. Ilieva, S., Atev, A., Pochekanska, A., Mincheva, D., & Panova, N. (1995). Annuaire de l’Universite de Sofia, Bulgaria, 88(4), 63–68.

    CAS  Google Scholar 

  18. Pantschev, C. H., Klenz, G., & Hafner, B. (1981). Lebensmittelindustrie, 28(2), 71–74.

    CAS  Google Scholar 

  19. Kurzina, L. V., Evtichov, P. P., & Polunina, A. P. (1973). Applied Biochemistry and Microbiology, 4, 621–624 (in Russian).

    Google Scholar 

  20. Rutlof, H., Friese, R., Taufel, A., & Taufel, K. (1968). Nahrwng, 12(1), 53–56.

    Article  Google Scholar 

  21. Marbach, I., Harel, E., & Mayer, A. M. (1985). Phytochemistry, 24, 2559–2561.

    Article  CAS  Google Scholar 

  22. Roboz, E., Barrat, R., & Tatum, E. (1952). Journal of Biological Chemistry, 2, 195–200.

    Google Scholar 

  23. Linkens, H. F., & Jackson, J. F. (Eds.) (1996). Modern methods of plant analysis, Vol 17. Berlin: Springer, pp. 165–177.

  24. Rose Jocelyn, K. C. (2003). The plant cell wall. Blackwell Publishing, pp. 14–24.

  25. Gutierrez-Correa, M., & Tengerdy, R. P. (1998). Biotechnology Letters, 20(1), 45–47.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Krastanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoilova, I., Krastanov, A. Overproduction of Laccase and Pectinase by Microbial Associations in Solid Substrate Fermentation. Appl Biochem Biotechnol 149, 45–51 (2008). https://doi.org/10.1007/s12010-007-8013-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-8013-2

Keywords

Navigation