Skip to main content
Log in

Enhancement of Quality and Stability of Dried Papaya by Pectin-Based Coatings as Air-Drying Pretreatment

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Edible coatings have rarely been studied as a pretreatment for air-drying process. Hydrocolloid-based coatings possess good barrier properties to gases, are soluble in water, and can incorporate additives such as ascorbic acid. The aim of the present study was to improve the physical and nutritional characteristics of dehydrated fruits and vegetables by edible coating application. For this, the drying kinetics and the vitamin C and color retention in papaya (Carica papaya L.) with and without edible coatings were evaluated. Color and vitamin C were analyzed after 3, 9, and 30 days of storage. Papaya slices were immersed in a 2 % pectin solution (w/w) or in a 2 % pectin solution with vitamin C (1 % w/w). The pectin coating was gelled by immersion in calcium lactate solution (2.8 % w/w). The pectin-coated and non-coated slices were air-dried at temperatures of 60 and 70 °C. Vitamin C, color, and water content were analyzed in fresh papaya and in coated papaya before and after drying and during storage. All drying experiments were repeated four times. Analysis of variance was applied to the experimental data to identify differences at a 5 % significance level. The drying kinetics of coated and non-coated samples were very similar, only changing with temperature. Even though the highest vitamin C retention has been found in pectin-coated samples during drying at 60 °C and during 30 days of storage, considerable levels of vitamin C were obtained in samples with pectin + vitamin C coating, after drying and storage. Sensory analysis presented positive results for encouraging the use of dried pectin + vitamin C-coated papaya commercially.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahmed, J., Shivhare, U. S., & Sandhu, K. S. (2002). Thermal degradation kinetics of carotenoids and visual color of papaya puree. Food Engineering and Physical Properties, 67(7), 2692–2695.

    CAS  Google Scholar 

  • AOAC—Association of Official Analytical Chemists. (1984). Official methods of analysis of the association of official analytical chemists (14th ed.). Arlington: AOAC.

    Google Scholar 

  • Avena-Bustillos, R. J., Krochta, J. M., & Saltveit, M. E. (1997). Water vapor resistance of red delicious apples and celery sticks coated with edible caseinate-acetylated monoglycerides films. Journal of Food Science, 62(2), 351–354.

    Article  Google Scholar 

  • Ayranci, E., & Tunc, S. (2004). The effect of edible coatings on water and vitamin C loss of apricots (Armeniaca vulgaris Lam.) and green peppers (Capsicum annuum L.). Food Chemistry, 87, 339–342.

    Article  CAS  Google Scholar 

  • Benassi, M. T., & Antunes, A. J. (1988). A comparison of meta-phosphoric and oxalic acids as extractant solutions for the determination of vitamin C in selected vegetables. Arquivos de Biologia e Tecnologia, 31(4), 507–513.

    CAS  Google Scholar 

  • Buettner, G. R., & Schafer, F. Q. (2004). Ascorbate as an antioxidant, in vitamin C. In H. Asard, J. M. May, & N. Smirnoff (Eds.), Function and biochemistry in animals and plants (pp. 173–188). Oxford: Bios Scientific.

    Google Scholar 

  • Canizares, D. (2013). Efeito da adição de revestimentos comestíveis sobre a qualidade de mamão desidratado após a secagem e durante o armazenamento. S J Rio Preto: UNESP. 77 p. Thesis (master's degree) - Institute of Biosciences, Language and Sciences (IBILCE), São Paulo State University “Julio de Mesquita Filho”, S J Rio Preto, SP, Brazil.

  • Crank, J. (1975). The mathematics of diffusion (2nd ed.). Oxford: Clarendon.

    Google Scholar 

  • Cuppett, S. L. (1994). Edible coatings as carriers of food additives, fungicides and natural antagonists. In J. M. Krochta (Ed.), Edible coatings and films to improve food quality (pp. 121–138). Lancaster: Technomic.

    Google Scholar 

  • Cuq, B., Gintard, N., & Guilbert, S. (1995). Edible films and coatings as active layers. In M. L. Rooney (Ed.), Edible active layer. London: Blackie Academic.

    Google Scholar 

  • Davey, M. W., Montagu, M. V., Inzé, D., Sanmartin, M., Kanellis, A., Smirnoff, N., Benzie, I. J. J., Strain, J. J., Favell, D., & Fletcher, J. (2000). Plant l-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. Journal of the Science of Food and Agriculture, 80(7), 825–860.

    Article  CAS  Google Scholar 

  • Díaz-Mula, H. M., Serrano, M., & Valero, D. (2012). Alginate coatings preserve fruits quality and bioactive compounds during storage of sweet cherry fruit. Food and Bioprocess Technology, 5, 2990–2997.

    Article  Google Scholar 

  • Donhowe, I. G., & Fennema, O. (1994). Edible films and coatings: characteristics, formation, definitions, and testing methods. In J. M. Krochta (Ed.), Edible coatings and films to improve food quality (pp. 1–24). Lancaster: Technomic.

    Google Scholar 

  • Eik, N.M. (2008). Avaliação de pré-tratamentos e aplicação de coberturas comestíveis sobre a secagem de frutas. Dissertation (Master in Food Engineering)—Faculty of Food Engineering, University of Campinas – UNICAMP. Campinas, SP, Brazil.

  • Ertekin, C., & Yaldiz, O. (2004). Drying of eggplant and selection of a suitable thin layer drying model. Journal of Food Engineering, 63(3), 349–359.

    Article  Google Scholar 

  • FAO (2010). FAO Statistical Databases. Site: http://faostat.fao.org/faostat Accessed 25 august, 2012.

  • Ferrari, C. C., Sarantópoulos, C. I. G. L., Carmello-Guerreiro, S. M., & Hubinger, M. D. (2013). Effect of osmotic dehydration and pectin edible coatings on quality and shelf life of fresh-cut melon. Food and Bioprocess Technology, 6, 80–91.

    Article  CAS  Google Scholar 

  • Frias, J., Peñas, E., Ullate, M., & Vidal-Valverde, C. (2010). Influence of drying by convective air dryer or power ultrasound the vitamin C and beta-carotene content of carrots. Journal Agricultural Food Chemistry, 58(19), 10539–10544.

    Article  CAS  Google Scholar 

  • Garcia, C. C., Mauro, M. A., & Kimura, M. (2007). Kinetics of osmotic dehydration and air-drying of pumpkins (Cucurbita moschata). Journal of Food Engineering, 88, 284–291.

    Article  Google Scholar 

  • Garcia, C. C., Canizares, D., Silva, K. S., Darros-Barbosa, R., & Mauro, M. A. (2012). Utilização de métodos combinados para obtenção de mamão Formosa (Carica papaya) seco. B. SEPPA, 30(2), 185–196.

    Google Scholar 

  • Garcia, C. C., Caetano, L. C., Silva, K. S., & Mauro, M. A. (2014). Influence of edible coating on the drying and quality of papaya (Carica papaya). Food Bioprocess Technology, 7, 2828–2839.

    Article  Google Scholar 

  • Gonçalves, J. A. (2010). Secagem de Carambolas (Averrhoa Carambola L.): Desenvolvimento e Aplicação de Coberturas Comestíveis Aditivadas com Agentes Antioxidantes Naturais para a Conservação de suas Propriedades Funcionais. Dissertation (Master in Food Engineering)—University Campinas, UNICAMP, Campinas.

  • Hawlader, M. N. A., Perera, C. O., Tian, M., & Yeo, K. L. (2006). Drying of guava and papaya: impact of different drying methods. Drying Technology, 24, 77–87.

    Article  CAS  Google Scholar 

  • Kadam, D. M., Rai, D. R., Patil, R. T., Wilson, R. A., Kaur, S., & Kumar, R. (2011). Quality of fresh and stored foam-mat drier Mandarin powder. International Journal of Food Science & Technology, 46, 793–799.

    Article  CAS  Google Scholar 

  • Kester, J. J., & Fennema, 0. R. (1986). Edible films and coatings: a review. Food Technology, 12, 47–59.

    Google Scholar 

  • Kimura, M., Rodriguez-Amaya, D. B., & Yokoyama, S. M. (1991). Cultivar differences and geographic effects on the carotenoid composition and vitamin A value of papaya. Lebensmittel-Wissenschaft und-Technologie, 24, 415–418.

    CAS  Google Scholar 

  • Kurozawa, L. E., Hubinger, M. D., & Park, K. J. (2012). Glass transition phenomenon on shrinkage of papaya during convective drying. Journal of Food Engineering, 108, 43–50.

    Article  Google Scholar 

  • Lago-Vanzela, E. S., Nascimento, P., Fontes, E. A. F., Mauro, M. A., & Kimura, M. (2013). Edible coating from native and modified starches retain carotenoids in pumpkin during drying. LWT Food Science and Technology, 50, 420–425.

    Article  CAS  Google Scholar 

  • Lemus-Mondaca, R., Betoret, N., Vega-Galvéz, A., & Lara-Aravena, E. (2009). Dehydration characteristics of papaya (Carica pubenscens): determination of equilibrium moisture content and diffusion coefficient. Journal of Food Process Engineering, 32(5), 645–663.

    Article  Google Scholar 

  • Lomauro, C. J., Bakshi, A. S., & Labuza, T. P. (1985). Evaluation of food moisture sorption isotherm equations. Part I: fruit, vegetables and meat products. Lebensmittel Wissenschaft und Technologie, 18(2), 111–117.

    Google Scholar 

  • Malmo, C., Storia, A. L., & Mauriello, G. (2013). Microencapsulation of Lactobacillus reuteri DSM 17938 cells coated in alginate beads with chitosan by spray drying to use as a probiotic cells in a chocolate soufflé. Food and Bioprocess Technology, 6, 795–805.

    Article  CAS  Google Scholar 

  • Maskan, M. (2001). Kinetics of colour change of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48, 169–175.

    Article  Google Scholar 

  • Mauro, M. A., & Menegalli, F. C. (2003). Evaluation of water and sucrose diffusion coefficients in potato tissue during osmotic concentration. Journal of Food Engineering, 57, 367–374.

    Article  Google Scholar 

  • Meilgaard, M., Civille, G. V., & Carr, B. T. (1999). Sensory evaluation techniques (3rd ed.). Boca Raton: CRC. Chapter 12.

    Book  Google Scholar 

  • Montgomery, D. C. (2001). Design and analysis of experiments (5th ed.). Hoboken: Wiley. Chapter 3.

    Google Scholar 

  • Mujumdar, A. S. (1997). Drying fundamentals. In C. G. J. Baker (Ed.), Industrial drying of foods (pp. 7–30). London: Blackie.

    Chapter  Google Scholar 

  • Murphy, E. W., Criner, P. E., & Gray, B. C. (1975). Comparisons of methods for calculating retentions of nutrients in cooked foods. Journal Agricultural Food Chemistry, 23(6).

  • Pérez-Chabela, M. L., Lara-Labastida, R., Rodriguez-Huezo, E., & Totosaus, A. (2013). Effect of spray drying encapsulation of thermotolerant lactic acid bacteria on meat batters properties. Food and Bioprocess Technology, 6, 1505–1515.

    Article  Google Scholar 

  • Raharitsifa, N., & Ratti, C. (2010). Foam-mat freeze-drying of apple juice part 1: experimental data and ANN simulations. Journal of Food Process Engineering, 33, 268–283.

    Article  Google Scholar 

  • Rodriguez-Amaya, D. B., Kimura, M., Godoy, H. T., & Amaya-Farfan, J. (2008). Updated Brazilian database on food carotenoids: factors affecting carotenoid composition—critical review. Journal of Food Composition and Analysis, 21, 445–463.

  • Rodriguez-Amaya, D. B. (2010). Quantitative analysis, in vitro assessment of bioavailability and antioxidant activity of food carotenoids—a review. Journal of Food Composition and Analysis, 23(7), 726–740.

  • Santos, P. H. S., & Silva, M. A. (2008). Retention of vitamin C in drying processes of fruits and vegetables—a review. Drying Technology, 26, 1421–1437.

    Article  CAS  Google Scholar 

  • Shi, J., Le Maguer, M., Kakuda, Y., Liptay, A., & Niekamp, F. (1999). Lycopene degradation and isomerization in tomato dehydration. Food Research International, 32, 15–21.

    Article  CAS  Google Scholar 

  • USDA (2012). U.S. Department of Agriculture, Agricultural Research Service.2012. USDA National Nutrient Database for Standard Reference, Release 25. Open software SR25 downloaded from Nutrient Data Laboratory Home Page, http://www.ars.usda.gov/ba/bhnrc/ndl. Accessed 10 Dec 2012.

  • Vargas, M., Pastor, C., Chiralt, A., McClements, D. J., & González-Martínez, C. (2008). Recent advances in edible coatings for fresh and minimally processed fruits. Food Science and Nutrition, 48(6), 496–511.

    CAS  Google Scholar 

  • Vega-Gálvez, A., Lemus-Mondaca, R., Fito, P., & Andrés, A. (2007). Moisture sorption isotherms and isosteric heat of red bell pepper (var. Lamuyo). Journal of Food Science, 13, 309–316.

    Google Scholar 

  • Wawire, M., Oey, I., Mathooko, F., Njoroge, C., Shitanda, D., & Hendrickx, M. (2011). Thermal stability of ascorbic acid and ascorbic acid oxidase in African cowpea leaves (Vigna unguiculata) of different maturities. Journal of Agriculture and Food Chemistry, 59, 1774–1783.

    Article  CAS  Google Scholar 

  • Wong, D. W. S., Camirand, W. M., & Pavlath, A. E. (1994). Development of edible coatings for minimally processed fruits and vegetables. In J. M. Krochta (Ed.), Edible coatings and films to improve food quality (pp. 65–88). Lancaster: Technomic.

    Google Scholar 

  • Zhao, Y. P., & Chang, K. C. (1995). Sulfite and starch affect color and carotenoids of dehydrated carrots (Daucus carota) during storage. Journal of Food Science, 60, 324–347.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank CNPq for the scholarship, FAPESP for the financial support (Proc 07/07586-0), PuracSynthesis (Brazil), and Danisco (Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Canizares.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canizares, D., Mauro, M.A. Enhancement of Quality and Stability of Dried Papaya by Pectin-Based Coatings as Air-Drying Pretreatment. Food Bioprocess Technol 8, 1187–1197 (2015). https://doi.org/10.1007/s11947-015-1483-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1483-2

Keywords

Navigation