Skip to main content
Log in

Preparation and Characterization of Antimicrobial Films Based on Chitosan for Active Food Packaging Applications

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The aim of this paper was to characterize chitosan samples from the shrimp shells for the later development of antimicrobial active systems. These systems include 100 % chitosan-based films obtained by casting, polyamide films with 5 and 10 % of chitosan obtained by extrusion and polyethylene/polyethylene terephthalate films with a coating of 0.6 % of chitosan. For that purpose, several analytical techniques including IR, 1H NMR, GPC, and microscopic techniques (scanning electron microscopy and transmission electron microscopy) were used. Within the studied samples, C1 showed the lowest DA and MW and consequently presented the most suitable properties for the development of an active packaging. Additionally, mechanical properties were performed. The effectiveness of the developed systems was evaluated by means of microbiological assays. The tested films showed antimicrobial capacity against coliform enterobacteria, mesophilic aerobic microorganism, and yeast and moulds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdou, E. S., Nagy, K. S. A., & Elsabee, M. Z. (2008). Extraction and characterization of chitin and chitosan from local sources. Bioresource Technology, 99, 1359–1367.

    Article  CAS  Google Scholar 

  • Aider, M. (2008). Chitosan applications for active bio-based films production and potential in the food industry: Review. LWT - Food Science and Technology, 43, 837–842.

    Article  Google Scholar 

  • Al Sagheer, F. A., Al-Sughayer, M. A., Muslim, S., & Elsabee, M. Z. (2009). Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydrate Polymers, 77, 410–419.

    Article  CAS  Google Scholar 

  • Aldemir, T., & Bostan, K. (2009). Effects of chitosan on the microbiological quality of ready to cook meatball. Journal of Faculty of Veterinary Medicine, 35(2), 13–21. Istanbul University.

    Google Scholar 

  • Alisashi, A., & Aïder, M. (2012). Applications of chitosan in the seafood industry and aquaculture: a review. Food and Bioprocess Technology, 5(3), 817–830.

    Article  Google Scholar 

  • Brugnerotto, J., Lizardi, J., Goycoolea, F. M., Argüelles-Monal, W., Desbrières, J., & Rinaudo, M. (2001). An infrared investigation in relation with chitin and chitosan characterization. Polymer, 42, 3569–3580.

    Article  CAS  Google Scholar 

  • Cai, J., Yang, J., Du, Y., Fan, L., Qiu, Y., Li, J., et al. (2006). Enzymatic preparation of chitosan from the waste Aspergilus niger mycelium of citric acid production plant. Carbohydrate Polymers, 64, 151–157.

    Article  CAS  Google Scholar 

  • Cerqueira, M. A., Souza, B. W. S., Teixeira, J. A., & Vicente, A. A. (2012). Effects of interactions between the constituents of chitosan-edible films on their physical properties. Food and Bioprocess Technology, 5(8), 3181–3192.

    Article  CAS  Google Scholar 

  • Darmadji, P., & Izumimoto, M. (1994). Effect of chitosan in meat preservation. Meat Science, 38, 243–254.

    Article  CAS  Google Scholar 

  • Duarte, M. L., Ferreira, M. C., Marvão, M. R., & Rocha, J. (2002). An optimised method to determine the degree of acetylation of chitin and chitosan by FTIR spectroscopy. International Journal of Biological Macromolecules, 31, 1–8.

    Article  CAS  Google Scholar 

  • Dutta, P. K., Tripathi, S., Mehrotra, G. K., & Dutta, J. (2009). Perspectives for chitosan based antimicrobial films in food applications. Food Chemistry, 114, 1173–1182.

    Article  CAS  Google Scholar 

  • Fernández-Cervera, M., Heinämäki, J., Räsänen, M., Maunu, S. L., Karjalainen, M., Nieto Acosta, O. M., et al. (2004). Solid-state characterization of chitosans derived from lobster chitin. Carbohydrate Polymers, 58, 401–408.

    Article  Google Scholar 

  • Fernández-Megia, E., Novoa-Carballal, R., Quiñoá, E., & Riguera, R. (2005). Optimal route conditions for the determination of the degree of acetylation of chitosan by 1H NMR. Carbohydrate Polymers, 61, 155–161.

    Article  Google Scholar 

  • Fimbeau, S., Grelier, S., Copinet, A., & Coma, V. (2006). Novel biodegradable films made from chitosan and poly(lactic acid) with antifungal properties against mycotoxinogen strains. Carbohydrate Polymers, 65, 185–193.

    Article  Google Scholar 

  • Gartner, C., Peláez, C., & López, B. L. (2010). Characterization of chitin and chitosan extracted from shrimp shells by two methods. e-polymers, 69, 1–16.

    Google Scholar 

  • Gómez-Estaca, J., López de Lacey, A., López-Caballero, M. E., Gómez-Guillén, M. C., & Montero, P. (2010). Biodegradable gelatine-chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiology, 27, 889–896.

    Article  Google Scholar 

  • Helander, I. M., Nurmiaho-Lassila, E. L., Ahvenainen, R., Rhoades, J., & Roller, S. (2001). Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. International Journal of Food Microbiology, 71(2–3), 235–244.

    Article  CAS  Google Scholar 

  • Hirai, A., Odani, H., & Nakajima, A. (1991). Determination of degree of deacetylation of chitosan samples by 1H NMR spectroscopy. Polymer Bulletin, 26, 87–94.

    Article  CAS  Google Scholar 

  • Hirano, S., Itakura, C., Seino, H., Akiyama, Y., Nonaka, I., Kanbara, N., et al. (1990). Chitosan as an ingredient for domestic animal feeds. Journal of Agricultural and Food Chemistry, 38(5), 1214–1217.

    Article  CAS  Google Scholar 

  • ISO. (2003). ISO 4833:2003. Microbiology of food and animal feeding stuffs -Horizontal method for the enumeration of microorganisms—colony-count technique at 30 °C. Switzerland: International Organisation for Standardisation.

    Google Scholar 

  • ISO. (2006). ISO 4832:2006. Microbiology of food and animal feeding stuffs -Horizontal method for the enumeration of coliforms—colony-count technique. Switzerland: International Organisation for Standardisation.

    Google Scholar 

  • ISO. (2008). ISO 21527-1:2008. Microbiology of food and animal feeding stuffs—horizontal meth for the enumeration of yeasts and moulds—part 1: colony count technique in products with water activity greater than 0,95. Switzerland: International Organisation for Standardisation.

    Google Scholar 

  • ISO. (2001). ISO 16649-2:2001. Microbiology of food and animal feeding stuffs—horizontal method for the enumeration of beta-glucuronidase-positive Escherichia coli—part 2: colony-count technique at 44 °C using 5-bromo-4-chloro-3-indolyl beta- d -glucuronide. Switzerland: International Organisation for Standardisation.

    Google Scholar 

  • Jayakumar, R., Prabaharan, M., Nair, S. V., Tokura, S., Tamura, H., & Selvamurugan, N. (2010). Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Progress in Material Science, 55, 675–709.

    Article  CAS  Google Scholar 

  • Joerger, R. D. (2007). Antimicrobial films for food applications: a quantitative analysis of their effectiveness. Packaging Technology & Science, 20, 231–273.

    Article  CAS  Google Scholar 

  • Kasaai, M. R. (2008). A review of several reported procedures to determine the degree of N-acetylation for chitin and chitosan using infrared spectroscopy. Carbohydrate Polymers, 71, 497–508.

    Article  CAS  Google Scholar 

  • Ko, M. J., Jo, W. H., Kim, H. C., & Lee, S. C. (1997). Miscibility of chitosan/polyamide 6 blends. Polymer Journal, 28(12), 997–1001.

    Article  Google Scholar 

  • Kurek, M., Brachais, C. H., Nguimjeu, C. M., Bonnnotte, A., Voilley, A., Galic, K., et al. (2012). Structure and thermal properties of a chitosan coated polyethylene bilayer film. Polymer Degradation and Stability, 97, 1232–1240.

    Article  CAS  Google Scholar 

  • Kurita, K. (2006). Chitin and chitosan: functional biopolymers from marine crustaceans. Marine Biotechnology, 8, 203–226.

    Article  CAS  Google Scholar 

  • Lavertu, M., Xia, Z., Serreqi, A. N., Berrada, M., Rodrigues, A., Wang, D., et al. (2003). A validated 1H NMR method for the determination of the degree of deacetylation of chitosan. Journal of Pharmaceutical and Biomedical Analysis, 32, 1149–1158.

    Article  CAS  Google Scholar 

  • Leleu, S., Herman, L., Heyndrickx, M., De Reu, K., Michiels, C. W., De Baerdemaeker, J., et al. (2011). Effects of Salmonella shell contamination and trans-shell penetration of coating hens eggs with chitosan. International Journal of Food Microbiology, 145, 43–48.

    Article  CAS  Google Scholar 

  • López, F. A., Mercê, A. L. R., Alguacil, F. J., & López-Delgado, A. (2008). A kinetic study on the termal behavior of chitosan. Journal of Thermal Analysis and Calorimetry, 91(2), 633–639.

    Article  Google Scholar 

  • Nguyen, S., Hisiger, S., Jolicoeur, M., Winnik, F. M., & Buschmann, M. D. (2009). Fractionation and characterization of chitosan by analytical SEC and 1H NMR after semi-preparative SEC. Carbohydrate Polymers, 75, 636–645.

    Article  CAS  Google Scholar 

  • No, H. K., Park, N. Y., Lee, S. H., & Meyers, S. P. (2002). Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. International Journal of Food Microbiology, 74(1), 65–72.

    Article  CAS  Google Scholar 

  • No, H. K., Meyers, S. P., Prinyawiwatkul, W., & Xu, Z. (2007). Applications of chitosan for improvement of quality and shelf life of foods: a review. Journal of Food Science, 72(5), R87–R100.

    Article  CAS  Google Scholar 

  • Pockett, P. (2004) Crystallinity in linear polyamides: a study using melt blending with small-molecule diluents. PhD Thesis. Department of Applied Science, University of South Australia, Adelaide, Australia.

  • Rabea, E. I., Badawy, M. E. T., Stevens, C. V., Sagghe, G., & Steurbaut, W. (2003). Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules, 4(6), 1457–1461.

    Article  CAS  Google Scholar 

  • Ratto, J. A., Chen, C. C., & Blumstein, R. B. (1996). Phase behavior study of chitosan/polyamide blends. Journal of Applied Polymer Science, 59, 1451–1461.

    Article  CAS  Google Scholar 

  • Rhoades, J., & Roller, S. (2000). Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and foods. Applied and Environmental Microbiology, 66(1), 80–86.

    Article  CAS  Google Scholar 

  • Rinaudo, M. (2006). Chitin and chitosan: properties and applications. Progress in Polymer Science, 31, 603–622.

    Article  CAS  Google Scholar 

  • Rinaudo, M. (2008). Main properties and current applications of some polysaccharides as biomaterials. Polymer International, 57, 397–430.

    Article  CAS  Google Scholar 

  • Roberts, M. F., & Jenekhe, S. A. (1991). Site-specific reversible scission of hydrogen bonds in polymers. An investigation of polyamides and their Lewis acid–base complexes by infrared spectroscopy. Macromolecules, 24, 3142–3146.

    Article  CAS  Google Scholar 

  • Sagoo, S., Board, R., & Roller, S. (2002). Chitosan inhibits growth of spoilage micro-organisms in chilled pork products. Food Microbiology, 19, 175–182.

    Article  CAS  Google Scholar 

  • Senguptaa, R., Tikku, V. K., Somani, A. K., Chaki, T. K., & Bhowmick, A. K. (2005). Electron beam irradiated polyamide-6,6 films—I: characterization by wide angle X-ray scattering and infrared spectroscopy. Radiation Physics and Chemistry, 72(5), 625–633.

    Article  Google Scholar 

  • Shahidi, F., Arachchi, J. K. V., & Jeon, Y. J. (1999). Food applications of chitin and chitosans. Trends in Food Science & Technology, 10(2), 37–51.

    Article  CAS  Google Scholar 

  • Shigemasa, Y., Matsuura, H., Sashiwa, H., & Saimoto, H. (1996). Evaluation of different absorbance ratios from infrared spectroscopy for analyzing the degree of deacetylation in chitin. International Journal of Biological Macromolecules, 18, 237–242.

    Article  CAS  Google Scholar 

  • Skrovanek, D. J., Howe, S. E., Painter, P. C., & Coleman, M. M. (1985). Hydrogen bonding in polymers: infrared temperature studies of an amorphous polyamide. Macromolecules, 18, 1676–1683.

    Article  CAS  Google Scholar 

  • Soultos, N., Tzikas, Z., Abrahim, A., Georgantelis, D., & Ambrosiadis, I. (2008). Chitosan effects on quality properties of Greek style fresh pork sausages. Meat Science, 80, 1150–1156.

    Article  CAS  Google Scholar 

  • Vårum, K. M., Anthonsen, M. W., Grasdalen, H., & Smidsrød, O. (1991). Detemination of the degree of N-acetylation and the distribution of N-acetyl groups in partially N-deacetylated chitin (chitosans) by high-field NMR spectroscopy. Carbohydrate Research, 211, 17–23.

    Article  Google Scholar 

  • Wu, X., Qui, J., Liu, P., & Sakai, E. (2013). Preparation and characterization of polyamide composites with modified graphite powders. Journal of Polymer Research, 15, 284.

    Google Scholar 

  • Xu, Y. X., Kim, K. M., Hanna, M. A., & Nag, D. (2005). Chitosan-starch composite film: preparation and characterization. Industrial Crops and Products, 21, 185–192.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded under Project no. 95935 from FONCICYT C002-2008-1/ALA 127 249. The authors are grateful to “Ministerio de Economía y Competitividad” for the Predoctoral fellowship FPI (Ref. BES-2012-051993) awarded to Miguel Ángel Lago. Raquel Sendón is grateful to the “Parga Pondal” program financed by “Consellería de Innovación e Industria, Xunta de Galicia” for her postdoctoral contract. The authors are also grateful to Patricia Blanco, Cristina Casal, and Gonzalo Hermelo for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rodríguez-Bernaldo de Quirós.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lago, M.A., Sendón, R., de Quirós, A.RB. et al. Preparation and Characterization of Antimicrobial Films Based on Chitosan for Active Food Packaging Applications. Food Bioprocess Technol 7, 2932–2941 (2014). https://doi.org/10.1007/s11947-014-1276-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1276-z

Keywords

Navigation