Skip to main content

Advertisement

Log in

Modifiers of expression in mutations of mismatch repair gene carriers in hereditary nonpolyposis colorectal cancer

  • Published:
Current Colorectal Cancer Reports

Abstract

Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant disorder caused by germline mutations in DNA mismatch repair (MMR) genes. Patients with this syndrome are at increased risk for a variety of cancers. Among individuals with MMR mutations, there is considerable variation in the age of cancer onset, probably resulting from a combination of other genetic and environmental factors. This review describes recent advances in identifying these genetic risk factors in HNPCC patients with MMR mutations. Recent research has identified potential modifiers of MMR gene expression that are involved in cell cycle control, DNA repair, and metabolism and the pathways through which these modifiers act. These findings will be important in identifying individuals that are more susceptible to developing cancer at an earlier age and may aid in the development of strategies to prevent HNPCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. de la Chapelle A: The incidence of Lynch syndrome. Fam Cancer 2005, 4:233–237.

    Article  PubMed  Google Scholar 

  2. Lynch HT, de la ChapelleA: Hereditary colorectal cancer. N Engl J Med 2003, 348:919–932.

    Article  PubMed  CAS  Google Scholar 

  3. Aarnio M, Sankila R, Pukkala E, et al.: Cancer risk in mutation carriers of DNA-mismatch-repair genes. Int J Cancer 1999, 81:214–218.

    Article  PubMed  CAS  Google Scholar 

  4. Peltomaki P: Lynch syndrome genes. Fam Cancer 2005, 4:227–232.

    Article  PubMed  CAS  Google Scholar 

  5. Sherr CJ: Cancer cell cycles. Science 1996, 274:1672–1677.

    Article  PubMed  CAS  Google Scholar 

  6. Donnellan R, Chetty R: Cyclin D1 and human neoplasia. Mol Pathol 1998, 51:1–7.

    Article  PubMed  CAS  Google Scholar 

  7. Sherr CJ: D-type cyclins. Trends Biochem Sci 1995, 20:187–190.

    Article  PubMed  CAS  Google Scholar 

  8. Betticher DC, Thatcher N, Altermatt HJ, et al.: Alternate splicing produces a novel cyclin D1 transcript. Oncogene 1995, 11:1005–1011.

    PubMed  CAS  Google Scholar 

  9. Kong S, Amos CI, Luthra R, et al.: Effects of cyclin D1 polymorphism on age of onset of hereditary nonpolyposis colorectal cancer. Cancer Res 2000, 60:249–252.

    PubMed  CAS  Google Scholar 

  10. Bala S, Peltomaki P: Cyclin D1 as a genetic modifier in hereditary nonpolyposis colorectal cancer. Cancer Res 2001,61:6042–6045.

    PubMed  CAS  Google Scholar 

  11. Levine AJ: p53, the cellular gatekeeper for growth and division. Cell 1997, 88:323–331.

    Article  PubMed  CAS  Google Scholar 

  12. Thomas M, Kalita A, Labrecque S, et al.: Two polymorphic variants of wild-type p53 differ biochemically and biologically. Mol Cell Biol 1999, 19:1092–1100.

    PubMed  CAS  Google Scholar 

  13. Jones JS, Chi X, Gu X, et al.: p53 polymorphism and age of onset of hereditary nonpolyposis colorectal cancer in a Caucasian population. Clin Cancer Res 2004,10: 5845–5849.

    Article  PubMed  CAS  Google Scholar 

  14. Kruger S, Bier A, Engel C, et al.: The p53 codon 72 variation is associated with the age of onset of hereditary non-polyposis colorectal cancer (HNPCC). J Med Genet 2005, 42:769–773.

    Article  PubMed  CAS  Google Scholar 

  15. Sotamaa K, Liyanarachchi S, Mecklin JP, et al.: p53 codon 72 and MDM2 SNP309 polymorphisms and age of colorectal cancer onset in Lynch syndrome. Clin Cancer Res 2005, 11:6840–6844.

    Article  PubMed  CAS  Google Scholar 

  16. Talseth BA, Meldrum C, Suchy J, et al.: Age of diagnosis of colorectal cancer in HNPCC patients is more complex than that predicted by R72P polymorphism in TP53. Int J Cancer 2006, 118:2479–2484.

    Article  PubMed  CAS  Google Scholar 

  17. Momand J, Wu HH, Dasgupta G: MDM2--master regulator of the p53 tumor suppressor protein. Gene 2000, 242:15–29.

    Article  PubMed  CAS  Google Scholar 

  18. Bond GL, Hu W, Bond EE, et al.: A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 2004, 119:591–602.

    Article  PubMed  CAS  Google Scholar 

  19. Pollak MN, Schernhammer ES, Hankinson SE: Insulin-like growth factors and neoplasia. Nat Rev Cancer 2004, 4:505–518.

    Article  PubMed  CAS  Google Scholar 

  20. Rosen CJ, Kurland ES, Vereault D, et al.: Association between serum insulin growth factor-I (IGF-I) and a simple sequence repeat in IGF-I gene: implications for genetic studies of bone mineral density. J Clin Endocrinol Metab 1998, 83:2286–2290.

    Article  PubMed  CAS  Google Scholar 

  21. Zecevic M, Amos CI, Gu X, et al.: IGF1 gene polymorphism and risk for hereditary nonpolyposis colorectal cancer. J Natl Cancer Inst 2006, 98:139–143. These findings indicate a significant inverse association between IGF1 CA-repeat length and risk for colorectal cancer in HNPCC.

    Article  PubMed  CAS  Google Scholar 

  22. Khanna KK, Lavin MF, Jackson SP, et al.: ATM, a central controller of cellular responses to DNA damage. Cell Death Differ 2001, 8: 1052–1065.

    Article  PubMed  CAS  Google Scholar 

  23. Maillet P, Chappuis PO, Vaudan G, et al.: A polymorphism in the ATM gene modulates the penetrance of hereditary nonpolyposis colorectal cancer. Int J Cancer 2000, 8:928–931.

    Article  Google Scholar 

  24. Jones SJ, Gu X, Lynch PM, et al.: ATM polymorphism and hereditary nonpolyposis colorectal cancer (HNPCC) age of onset (United States). Cancer Causes Control 2005, 16:749–753.

    Article  PubMed  Google Scholar 

  25. Audebert M, Radicella JP, Dizdaroglu M: Effect of single mutations in the OGG1 gene found in human tumors on the substrate specificity of the Ogg1 protein. Nucleic Acids Res 2000,28:2672–2678.

    Article  PubMed  CAS  Google Scholar 

  26. Bruner SD, Norman DP, Verdine GL: Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature 2000, 403:859–866.

    Article  PubMed  CAS  Google Scholar 

  27. Kim IL, Ku JL, Kang HL, et al.: Mutational analysis of OGG1, MYH, MTH1 in FAP, HNPCC and sporadic colorectal cancer patients: R154H OGG1 polymorphism is associated with sporadic colorectal cancer patients. Human Genet 2004, 115:498–503.

    Article  CAS  Google Scholar 

  28. Okano M, Bell DW, Haber DA, et al.: DNA methyltransferases Dnmy3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999, 99:247–257.

    Article  PubMed  CAS  Google Scholar 

  29. Chuang LS, Ian HI, Koh TW, et al.: Human DNA-(cytosine-5) methyltransferase-PCNA complex is a target for p21Waf1. Science 1997, 277:1996–2000.

    Article  Google Scholar 

  30. Shen H, Wang L, Spitz MR, et al.: A novel polymorphism in human cytosine DNA-methyltransferase-3B promoter is associated with an increased risk of lung cancer. Cancer Res 2002, 27:2291–2298.

    Google Scholar 

  31. Wang L, Rodrihuez M, Kim ES, et al.: A novel C/T polymorphism in the core promoter of human de novo cytosine DNA methyltransferase 3B6 is associated with prognosis in head and neck cancer. Int J Oncol 2004, 25:993–999.

    PubMed  CAS  Google Scholar 

  32. Jones JS, Amos CI, Pande M, et al.: DNMT3b polymorphism and hereditary nonpolyposis colorectal cancer age of onset. Cancer Epidemiol Biomarkers Pre 2006, 15:886–891. This study provided the first evidence that the DNMT 3b promoter polymorphism is significantly associated with increased age-associated risk in HNPCC.

    Article  CAS  Google Scholar 

  33. Wang Y, Cortez D, Yazdi P, et al.: BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev 2000, 14:927–939.

    PubMed  CAS  Google Scholar 

  34. Vineis P, Malats N, Lang M, et al.: eds.: Metabolic polymorphisms and susceptibility to cancer. Lyon: IARC Scientific Publications; 1999.

    Google Scholar 

  35. Moisio AL, Sistonen P, Mecklin JP, et al.: Genetic polymorphisms in carcinogen metabolism and their association to hereditary nonpolyposis colorectal cancer. Gastroenterology 1998, 115:1387–1394.

    Article  PubMed  CAS  Google Scholar 

  36. Heinimann K, Scott RJ, Chappuis P, et al.: N-acetyltransferase 2 influences cancer prevalence in hMLH1/hMSH2 mutation carriers. Cancer Res 1999,59:3038–3040.

    PubMed  CAS  Google Scholar 

  37. Jones JS, Gu X, Campos I, et al.: GSTM1 Polymorphism does not affect hereditary nonpolyposis colorectal cancer age of onset. Cancer Epidemiol 2004, 13:676–678.

    CAS  Google Scholar 

  38. Frazier ML, O’Donnell FT, Kong S, et al.: Age-associated risk of cancer among individuals with N-acetyltransferase 2 (NAT2) mutations and mutations in mismatch repair genes. Cancer Res 2001, 61:1269–1271.

    PubMed  CAS  Google Scholar 

  39. Pistorius S, Gorgens H, Kruger S, et al.: N-acetyltransferase (NAT) 2 acetylator status and age of onset in patients with hereditary nonpolyposis colorectal cancer (HNPCC). Cancer Lett 2005, [Epub ahead of print].

  40. Cortessis V, Thomas DC. Toxicokinetic genetics: an approach to gene-environment and gene-gene interactions in complex metabolic pathways. IARC Sci Publ 2004,157:127–150.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongjuan Wei PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Zhu, J., Pande, M. et al. Modifiers of expression in mutations of mismatch repair gene carriers in hereditary nonpolyposis colorectal cancer. Curr colorectal cancer rep 2, 179–184 (2006). https://doi.org/10.1007/s11888-006-0020-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11888-006-0020-0

Keywords

Navigation