Skip to main content

Mismatch Repair-Proficient Hereditary Nonpolyposis Colorectal Cancer

  • Chapter
  • First Online:
Hereditary Colorectal Cancer
  • 1054 Accesses

Abstract

Approximately 40% of the families meeting the Amsterdam criteria for a diagnosis of hereditary nonpolyposis colorectal cancer lack evidence of heritable defects in the DNA mismatch repair (MMR) system; more specifically, these patients have no germline mutations in the MMR genes and, therefore, no tumor microsatellite instability or loss of immunohistochemical staining of MMR proteins. The proportion of nonpolyposis CRC families without MMR defects further increases when less stringent criteria for hereditary CRC are considered. As has been the case for other hereditary cancer syndromes, the identification of the genes associated with hereditary colorectal cancer would facilitate the molecular diagnosis of the disease and the development of appropriate surveillance guidelines and clinical management protocols for these patients. However, as will be discussed in this chapter, the identification of causal genes has not proven easy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lindor NM, Rabe K, Petersen GM, Haile R, Casey G, Baron J, et al. Lower cancer incidence in Amsterdam-I criteria families without mismatch repair deficiency: familial colorectal cancer type X. JAMA. 2005;293(16):1979–85.

    Article  CAS  Google Scholar 

  2. Dominguez-Valentin M, Therkildsen C, Da Silva S, Nilbert M. Familial colorectal cancer type X: genetic profiles and phenotypic features. Mod Pathol. 2014;28(1):30–6.

    Article  Google Scholar 

  3. Llor X, Pons E, Xicola RM, Castells A, Alenda C, Pinol V, et al. Differential features of colorectal cancers fulfilling Amsterdam criteria without involvement of the mutator pathway. Clin Cancer Res. 2005;11(20):7304–10.

    Article  CAS  Google Scholar 

  4. Mueller-Koch Y, Vogelsang H, Kopp R, Lohse P, Keller G, Aust D, et al. Hereditary non-polyposis colorectal cancer: clinical and molecular evidence for a new entity of hereditary colorectal cancer. Gut. 2005;54(12):1733–40.

    Article  CAS  Google Scholar 

  5. Valle L, Perea J, Carbonell P, Fernandez V, Dotor AM, Benitez J, et al. Clinicopathologic and pedigree differences in amsterdam I-positive hereditary nonpolyposis colorectal cancer families according to tumor microsatellite instability status. J Clin Oncol. 2007;25(7):781–6.

    Article  CAS  Google Scholar 

  6. Francisco I, Albuquerque C, Lage P, Belo H, Vitoriano I, Filipe B, et al. Familial colorectal cancer type X syndrome: two distinct molecular entities? Familial Cancer. 2011;10(4):623–31.

    Article  Google Scholar 

  7. Shiovitz S, Copeland WK, Passarelli MN, Burnett-Hartman AN, Grady WM, Potter JD, et al. Characterisation of familial colorectal cancer Type X, Lynch syndrome, and non-familial colorectal cancer. Br J Cancer. 2014;111(3):598–602.

    Article  CAS  Google Scholar 

  8. Jass JR. Hereditary non-polyposis colorectal cancer: the rise and fall of a confusing term. World J Gastroenterol. 2006;12(31):4943–50.

    Article  CAS  Google Scholar 

  9. Lindor NM. Familial colorectal cancer type X: the other half of hereditary nonpolyposis colon cancer syndrome. Surg Oncol Clin N Am. 2009;18(4):637–45.

    Article  Google Scholar 

  10. Klarskov L, Holck S, Bernstein I, Nilbert M. Hereditary colorectal cancer diagnostics: morphological features of familial colorectal cancer type X versus Lynch syndrome. J Clin Pathol. 2012;65(4):352–6.

    Article  Google Scholar 

  11. Abdel-Rahman WM, Ollikainen M, Kariola R, Jarvinen HJ, Mecklin JP, Nystrom-Lahti M, et al. Comprehensive characterization of HNPCC-related colorectal cancers reveals striking molecular features in families with no germline mismatch repair gene mutations. Oncogene. 2005;24(9):1542–51.

    Article  CAS  Google Scholar 

  12. Goel A, Xicola RM, Nguyen TP, Doyle BJ, Sohn VR, Bandipalliam P, et al. Aberrant DNA methylation in hereditary nonpolyposis colorectal cancer without mismatch repair deficiency. Gastroenterology. 2010;138(5):1854–62.

    Article  CAS  Google Scholar 

  13. Therkildsen C, Jonsson G, Dominguez-Valentin M, Nissen A, Rambech E, Halvarsson B, et al. Gain of chromosomal region 20q and loss of 18 discriminates between Lynch syndrome and familial colorectal cancer. Eur J Cancer. 2013;49(6):1226–35.

    Article  CAS  Google Scholar 

  14. Ogino S, Kawasaki T, Nosho K, Ohnishi M, Suemoto Y, Kirkner GJ, et al. LINE-1 hypomethylation is inversely associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer. Int J Cancer. 2008;122(12):2767–73.

    Article  CAS  Google Scholar 

  15. Igarashi S, Suzuki H, Niinuma T, Shimizu H, Nojima M, Iwaki H, et al. A novel correlation between LINE-1 hypomethylation and the malignancy of gastrointestinal stromal tumors. Clin Cancer Res. 2010;16(21):5114–23.

    Article  CAS  Google Scholar 

  16. Antelo M, Balaguer F, Shia J, Shen Y, Hur K, Moreira L, et al. A high degree of LINE-1 hypomethylation is a unique feature of early-onset colorectal cancer. PLoS One. 2012;7(9):e45357.

    Article  CAS  Google Scholar 

  17. Ogino S, Nosho K, Kirkner GJ, Kawasaki T, Chan AT, Schernhammer ES, et al. A cohort study of tumoral LINE-1 hypomethylation and prognosis in colon cancer. J Natl Cancer Inst. 2008;100(23):1734–8.

    Article  CAS  Google Scholar 

  18. Boland CR. Recent discoveries in the molecular genetics of Lynch syndrome. Familial Cancer. 2016;15(3):395–403.

    Article  CAS  Google Scholar 

  19. Ikeda K, Shiraishi K, Eguchi A, Shibata H, Yoshimoto K, Mori T, et al. Long interspersed nucleotide element 1 hypomethylation is associated with poor prognosis of lung adenocarcinoma. Ann Thorac Surg. 2013;96(5):1790–4.

    Article  Google Scholar 

  20. Iwagami S, Baba Y, Watanabe M, Shigaki H, Miyake K, Ishimoto T, et al. LINE-1 hypomethylation is associated with a poor prognosis among patients with curatively resected esophageal squamous cell carcinoma. Ann Surg. 2013;257(3):449–55.

    Article  Google Scholar 

  21. Shigaki H, Baba Y, Watanabe M, Murata A, Iwagami S, Miyake K, et al. LINE-1 hypomethylation in gastric cancer, detected by bisulfite pyrosequencing, is associated with poor prognosis. Gastric Cancer. 2013;16(4):480–7.

    Article  CAS  Google Scholar 

  22. Sanchez-de-Abajo A, de la Hoya M, van Puijenbroek M, Tosar A, Lopez-Asenjo JA, Diaz-Rubio E, et al. Molecular analysis of colorectal cancer tumors from patients with mismatch repair proficient hereditary nonpolyposis colorectal cancer suggests novel carcinogenic pathways. Clin Cancer Res. 2007;13(19):5729–35.

    Article  CAS  Google Scholar 

  23. Middeldorp A, van Eijk R, Oosting J, Forte GI, van Puijenbroek M, van Nieuwenhuizen M, et al. Increased frequency of 20q gain and copy-neutral loss of heterozygosity in mismatch repair proficient familial colorectal carcinomas. Int J Cancer. 2012;130(4):837–46.

    Article  CAS  Google Scholar 

  24. Bellido F, Pineda M, Sanz-Pamplona R, Navarro M, Nadal M, Lazaro C, et al. Comprehensive molecular characterisation of hereditary non-polyposis colorectal tumours with mismatch repair proficiency. Eur J Cancer. 2014;50(11):1964–72.

    Article  CAS  Google Scholar 

  25. Leppert M, Dobbs M, Scambler P, O'Connell P, Nakamura Y, Stauffer D, et al. The gene for familial polyposis coli maps to the long arm of chromosome 5. Science (New York, NY). 1987;238(4832):1411–3.

    Article  CAS  Google Scholar 

  26. Nishisho I, Nakamura Y, Miyoshi Y, Miki Y, Ando H, Horii A, et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science (New York, NY). 1991;253(5020):665–9.

    Article  CAS  Google Scholar 

  27. Wiesner GL, Daley D, Lewis S, Ticknor C, Platzer P, Lutterbaugh J, et al. A subset of familial colorectal neoplasia kindreds linked to chromosome 9q22.2-31.2. Proc Natl Acad Sci U S A. 2003;100(22):12961–5.

    Article  CAS  Google Scholar 

  28. Kemp ZE, Carvajal-Carmona LG, Barclay E, Gorman M, Martin L, Wood W, et al. Evidence of linkage to chromosome 9q22.33 in colorectal cancer kindreds from the United Kingdom. Cancer Res. 2006;66(10):5003–6.

    Article  CAS  Google Scholar 

  29. Skoglund J, Djureinovic T, Zhou XL, Vandrovcova J, Renkonen E, Iselius L, et al. Linkage analysis in a large Swedish family supports the presence of a susceptibility locus for adenoma and colorectal cancer on chromosome 9q22.32-31.1. J Med Genet. 2006;43(2):e7.

    Article  CAS  Google Scholar 

  30. Neklason DW, Kerber RA, Nilson DB, Anton-Culver H, Schwartz AG, Griffin CA, et al. Common familial colorectal cancer linked to chromosome 7q31: a genome-wide analysis. Cancer Res. 2008;68(21):8993–7.

    Article  CAS  Google Scholar 

  31. Papaemmanuil E, Carvajal-Carmona L, Sellick GS, Kemp Z, Webb E, Spain S, et al. Deciphering the genetics of hereditary non-syndromic colorectal cancer. Eur J Hum Genet. 2008;16(12):1477–86.

    Article  CAS  Google Scholar 

  32. Picelli S, Vandrovcova J, Jones S, Djureinovic T, Skoglund J, Zhou XL, et al. Genome-wide linkage scan for colorectal cancer susceptibility genes supports linkage to chromosome 3q. BMC Cancer. 2008;8:87.

    Article  Google Scholar 

  33. Gray-McGuire C, Guda K, Adrianto I, Lin CP, Natale L, Potter JD, et al. Confirmation of linkage to and localization of familial colon cancer risk haplotype on chromosome 9q22. Cancer Res. 2010;70(13):5409–18.

    Article  CAS  Google Scholar 

  34. Neklason DW, Tuohy TM, Stevens J, Otterud B, Baird L, Kerber RA, et al. Colorectal adenomas and cancer link to chromosome 13q22.1-13q31.3 in a large family with excess colorectal cancer. J Med Genet. 2010;47(10):692–9.

    Article  CAS  Google Scholar 

  35. Saunders IW, Ross J, Macrae F, Young GP, Blanco I, Brohede J, et al. Evidence of linkage to chromosomes 10p15.3-p15.1, 14q24.3-q31.1 and 9q33.3-q34.3 in non-syndromic colorectal cancer families. Eur J Hum Genet. 2012;20(1):91–6.

    Article  CAS  Google Scholar 

  36. Kontham V, von Holst S, Lindblom A. Linkage analysis in familial non-Lynch syndrome colorectal cancer families from Sweden. PLoS One. 2013;8(12):e83936.

    Article  Google Scholar 

  37. Teerlink C, Nelson Q, Burt R, Cannon-Albright L. Significant evidence of linkage for a gene predisposing to colorectal cancer and multiple primary cancers on 22q11. Clin Transl Gastroenterol. 2014;5:e50.

    Article  CAS  Google Scholar 

  38. Rudkjobing LA, Eiberg H, Mikkelsen HB, Binderup ML, Bisgaard ML. The analysis of a large Danish family supports the presence of a susceptibility locus for adenoma and colorectal cancer on chromosome 11q24. Familial Cancer. 2015;14(3):393–400.

    Article  Google Scholar 

  39. Sanchez-Tome E, Rivera B, Perea J, Pita G, Rueda D, Mercadillo F, et al. Genome-wide linkage analysis and tumoral characterization reveal heterogeneity in familial colorectal cancer type X. J Gastroenterol. 2015;50(6):657–66.

    Article  CAS  Google Scholar 

  40. Valle L. Recent discoveries in the genetics of familial colorectal cancer and polyposis. Clin Gastroenterol Hepatol. 2017;15(3):461–462.

    Article  CAS  Google Scholar 

  41. Nieminen TT, O'Donohue MF, Wu Y, Lohi H, Scherer SW, Paterson AD, et al. Germline mutation of RPS20, encoding a ribosomal protein, causes predisposition to hereditary nonpolyposis colorectal carcinoma without DNA mismatch repair deficiency. Gastroenterology. 2014;147(3):595–8 e5.

    Article  CAS  Google Scholar 

  42. Broderick P, Dobbins SE, Chubb D, Kinnersley B, Dunlop MG, Tomlinson I, et al. Validation of recently proposed colorectal cancer susceptibility gene variants in an analysis of families and patients-a systematic review. Gastroenterology. 2016;152(1):75–7 e4.

    Article  Google Scholar 

  43. Segui N, Mina LB, Lazaro C, Sanz-Pamplona R, Pons T, Navarro M, et al. Germline mutations in FAN1 cause hereditary colorectal cancer by impairing DNA repair. Gastroenterology. 2015;149(3):563–6.

    Article  CAS  Google Scholar 

  44. Smith AL, Alirezaie N, Connor A, Chan-Seng-Yue M, Grant R, Selander I, et al. Candidate DNA repair susceptibility genes identified by exome sequencing in high-risk pancreatic cancer. Cancer Lett. 2016;370(2):302–12.

    Article  CAS  Google Scholar 

  45. de Voer RM, Geurts van Kessel A, Weren RD, Ligtenberg MJ, Smeets D, Fu L, et al. Germline mutations in the spindle assembly checkpoint genes BUB1 and BUB3 are risk factors for colorectal cancer. Gastroenterology. 2013;145(3):544–7.

    Article  Google Scholar 

  46. Schulz E, Klampfl P, Holzapfel S, Janecke AR, Ulz P, Renner W, et al. Germline variants in the SEMA4A gene predispose to familial colorectal cancer type X. Nat Commun. 2004;5:5191.

    Article  Google Scholar 

  47. Kinnersley B, Chubb D, Dobbins SE, Frampton M, Buch S, Timofeeva MN, et al. Correspondence: SEMA4A variation and risk of colorectal cancer. Nat Commun. 2016;7:10611.

    Article  CAS  Google Scholar 

  48. Bellido F, Sowada N, Mur P, Lázaro C, Pons T, Valdés-Mas R, et al. Association Between Germline Mutations in BRF1, a Subunit of the RNA Polymerase III Transcription Complex, and Hereditary Colorectal Cancer. Gastroenterology. 2018;154(1):181–194. doi:10.1053/j.gastro.2017.09.005

    Article  CAS  PubMed  Google Scholar 

  49. Venkatachalam R, Ligtenberg MJ, Hoogerbrugge N, Schackert HK, Gorgens H, Hahn MM, et al. Germline epigenetic silencing of the tumor suppressor gene PTPRJ in early-onset familial colorectal cancer. Gastroenterology. 2010;139(6):2221–4.

    Article  Google Scholar 

  50. de Voer RM, Hahn MM, Weren RD, Mensenkamp AR, Gilissen C, van Zelst-Stams WA, et al. Identification of novel candidate genes for early-onset colorectal cancer susceptibility. PLoS Genet. 2016;12(2):e1005880.

    Article  Google Scholar 

  51. Spier I, Holzapfel S, Altmuller J, Zhao B, Horpaopan S, Vogt S, et al. Frequency and phenotypic spectrum of germline mutations in POLE and seven other polymerase genes in 266 patients with colorectal adenomas and carcinomas. Int J Cancer. 2015;137(2):320–31.

    Article  CAS  Google Scholar 

  52. Villacis RA, Abreu FB, Miranda PM, Domingues MA, Carraro DM, Santos EM, et al. ROBO1 deletion as a novel germline alteration in breast and colorectal cancer patients. Tumour Biol. 2016;37(3):3145–53.

    Article  CAS  Google Scholar 

  53. Wei C, Peng B, Han Y, Chen WV, Rother J, Tomlinson GE, et al. Mutations of HNRNPA0 and WIF1 predispose members of a large family to multiple cancers. Familial Cancer. 2015;14(2):297–306.

    Article  CAS  Google Scholar 

  54. Gylfe AE, Katainen R, Kondelin J, Tanskanen T, Cajuso T, Hanninen U, et al. Eleven candidate susceptibility genes for common familial colorectal cancer. PLoS Genet. 2013;9(10):e1003876.

    Article  Google Scholar 

  55. Esteban-Jurado C, Vila-Casadesus M, Garre P, Lozano JJ, Pristoupilova A, Beltran S, et al. Whole-exome sequencing identifies rare pathogenic variants in new predisposition genes for familial colorectal cancer. Genet Med. 2014;17(2):131–42.

    Article  Google Scholar 

  56. Tanskanen T, Gylfe AE, Katainen R, Taipale M, Renkonen-Sinisalo L, Jarvinen H, et al. Systematic search for rare variants in Finnish early-onset colorectal cancer patients. Cancer Genet. 2015;208(1–2):35–40.

    Article  CAS  Google Scholar 

  57. Esteban-Jurado C, Franch-Exposito S, Munoz J, Ocana T, Carballal S, Lopez-Ceron M, et al. The Fanconi anemia DNA damage repair pathway in the spotlight for germline predisposition to colorectal cancer. Eur J Hum Genet. 2016;24(10):1501–5.

    Article  CAS  Google Scholar 

  58. Garre P, Martin L, Sanz J, Romero A, Tosar A, Bando I, et al. BRCA2 gene: a candidate for clinical testing in familial colorectal cancer type X. Clin Genet. 2015;87(6):582–7.

    Article  CAS  Google Scholar 

  59. Yurgelun MB, Allen B, Kaldate RR, Bowles KR, Judkins T, Kaushik P, et al. Identification of a variety of mutations in cancer predisposition genes in patients with suspected Lynch syndrome. Gastroenterology. 2015;149(3):604–13 e20.

    Article  CAS  Google Scholar 

  60. DeRycke MS, Gunawardena SR, Middha S, Asmann YW, Schaid DJ, McDonnell SK, et al. Identification of novel variants in colorectal cancer families by high-throughput exome sequencing. Cancer Epidemiol Biomark Prev. 2013;22(7):1239–51.

    Article  CAS  Google Scholar 

  61. Smith CG, Naven M, Harris R, Colley J, West H, Li N, et al. Exome resequencing identifies potential tumor-suppressor genes that predispose to colorectal cancer. Hum Mutat. 2013;34(7):1026–34.

    Article  CAS  Google Scholar 

  62. Chubb D, Broderick P, Dobbins SE, Frampton M, Kinnersley B, Penegar S, et al. Rare disruptive mutations and their contribution to the heritable risk of colorectal cancer. Nat Commun. 2016;7:11883.

    Article  CAS  Google Scholar 

  63. Sill H, Schulz E, Steinke-Lange V, Boland CR. Correspondence: reply to 'SEMA4A variation and risk of colorectal cancer'. Nat Commun. 2016;7:10695.

    Article  CAS  Google Scholar 

  64. Spier I, Kerick M, Drichel D, Horpaopan S, Altmuller J, Laner A, et al. Exome sequencing identifies potential novel candidate genes in patients with unexplained colorectal adenomatous polyposis. Familial Cancer. 2016;15(2):281–8.

    Article  CAS  Google Scholar 

  65. Garre P, Briceno V, Xicola RM, Doyle BJ, de la Hoya M, Sanz J, et al. Analysis of the oxidative damage repair genes NUDT1, OGG1, and MUTYH in patients from mismatch repair proficient HNPCC families (MSS-HNPCC). Clin Cancer Res. 2011;17(7):1701–12.

    Article  CAS  Google Scholar 

  66. Dallosso AR, Dolwani S, Jones N, Jones S, Colley J, Maynard J, et al. Inherited predisposition to colorectal adenomas caused by multiple rare alleles of MUTYH but not OGG1, NUDT1, NTH1 or NEIL 1, 2 or 3. Gut. 2008;57(9):1252–5.

    Article  CAS  Google Scholar 

  67. Kinnersley B, Buch S, Castellvi-Bel S, Farrington SM, Forsti A, Hampe J, et al. Re: role of the oxidative DNA damage repair gene OGG1 in colorectal tumorigenesis. J Natl Cancer Inst. 2014;106(5):dju086.

    Google Scholar 

  68. Lubbe SJ, Pittman AM, Matijssen C, Twiss P, Olver B, Lloyd A, et al. Evaluation of germline BMP4 mutation as a cause of colorectal cancer. Hum Mutat. 2011;32(1):E1928–38.

    Article  CAS  Google Scholar 

  69. Zogopoulos G, Jorgensen C, Bacani J, Montpetit A, Lepage P, Ferretti V, et al. Germline EPHB2 receptor variants in familial colorectal cancer. PLoS One. 2008;3(8):e2885.

    Article  Google Scholar 

  70. Coissieux MM, Tomsic J, Castets M, Hampel H, Tuupanen S, Andrieu N, et al. Variants in the netrin-1 receptor UNC5C prevent apoptosis and increase risk of familial colorectal cancer. Gastroenterology. 2011;141(6):2039–46.

    Article  CAS  Google Scholar 

  71. Guda K, Moinova H, He J, Jamison O, Ravi L, Natale L, et al. Inactivating germ-line and somatic mutations in polypeptide N-acetylgalactosaminyltransferase 12 in human colon cancers. Proc Natl Acad Sci U S A. 2009;106(31):12921–5.

    Article  CAS  Google Scholar 

  72. Clarke E, Green RC, Green JS, Mahoney K, Parfrey PS, Younghusband HB, et al. Inherited deleterious variants in GALNT12 are associated with CRC susceptibility. Hum Mutat. 2012;33(7):1056–8.

    Article  CAS  Google Scholar 

  73. Mur P, Elena SC, Ausso S, Aiza G, Rafael VM, Pineda M, et al. Scarce evidence of the causal role of germline mutations in UNC5C in hereditary colorectal cancer and polyposis. Sci Rep. 2016;6:20697.

    Article  CAS  Google Scholar 

  74. Segui N, Pineda M, Navarro M, Lazaro C, Brunet J, Infante M, et al. GALNT12 is not a major contributor of familial colorectal cancer type X. Hum Mutat. 2014;35(1):50–2.

    Article  CAS  Google Scholar 

  75. Pearlman R, Frankel WL, Swanson B, Zhao W, Yilmaz A, Miller K, et al. Prevalence and Spectrum of germline cancer susceptibility gene mutations among patients with early-onset colorectal cancer. JAMA Oncol. 2017;3(4):464–71.

    Article  Google Scholar 

  76. Yurgelun MB, Masciari S, Joshi VA, Mercado RC, Lindor NM, Gallinger S, et al. Germline TP53 mutations in patients with early-onset colorectal cancer in the colon cancer family registry. JAMA Oncol. 2015;1(2):214–21.

    Article  Google Scholar 

  77. Wang L, Baudhuin LM, Boardman LA, Steenblock KJ, Petersen GM, Halling KC, et al. MYH mutations in patients with attenuated and classic polyposis and with young-onset colorectal cancer without polyps. Gastroenterology. 2004;127(1):9–16.

    Article  CAS  Google Scholar 

  78. Knopperts AP, Nielsen M, Niessen RC, Tops CM, Jorritsma B, Varkevisser J, et al. Contribution of bi-allelic germline MUTYH mutations to early-onset and familial colorectal cancer and to low number of adenomatous polyps: case-series and literature review. Familial Cancer. 2013;12(1):43–50.

    Article  CAS  Google Scholar 

  79. Castillejo A, Vargas G, Castillejo MI, Navarro M, Barbera VM, Gonzalez S, et al. Prevalence of germline MUTYH mutations among Lynch-like syndrome patients. Eur J Cancer. 2014;50(13):2241–50.

    Article  CAS  Google Scholar 

  80. Segui N, Navarro M, Pineda M, Koger N, Bellido F, Gonzalez S, et al. Exome sequencing identifies MUTYH mutations in a family with colorectal cancer and an atypical phenotype. Gut. 2015;64(2):355–6.

    Article  Google Scholar 

  81. Valle L, Hernandez-Illan E, Bellido F, Aiza G, Castillejo A, Castillejo MI, et al. New insights into POLE and POLD1 germline mutations in familial colorectal cancer and polyposis. Hum Mol Genet. 2014;23(13):3506–12.

    Article  CAS  Google Scholar 

  82. Bellido F, Pineda M, Aiza G, Valdes-Mas R, Navarro M, Puente DA, et al. POLE and POLD1 mutations in 529 kindred with familial colorectal cancer and/or polyposis: review of reported cases and recommendations for genetic testing and surveillance. Genet Med. 2016;18(4):325–32.

    Article  CAS  Google Scholar 

  83. Dobbins SE, Broderick P, Chubb D, Kinnersley B, Sherborne AL, Houlston RS. Undefined familial colorectal cancer and the role of pleiotropism in cancer susceptibility genes. Familial Cancer. 2016;15(4):593–9.

    Article  CAS  Google Scholar 

  84. Yurgelun MB, Kulke MH, Fuchs CS, Allen BA, Uno H, Hornick JL, et al. Cancer susceptibility gene mutations in individuals with colorectal cancer. J Clin Oncol. 2017;35(10):1086–95.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Valle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Valle, L. (2018). Mismatch Repair-Proficient Hereditary Nonpolyposis Colorectal Cancer. In: Valle, L., Gruber, S., Capellá, G. (eds) Hereditary Colorectal Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-74259-5_4

Download citation

Publish with us

Policies and ethics