Skip to main content
Log in

Performance and Comparison of Cell-Centered and Node-Centered Unstructured Finite Volume Discretizations for Shallow Water Free Surface Flows

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Finite volume (FV) methods for solving the two-dimensional (2D) nonlinear shallow water equations (NSWE) with source terms on unstructured, mostly triangular, meshes are known for some time now. There are mainly two basic formulations of the FV method: node-centered (NCFV) and cell-centered (CCFV). In the NCFV formulation the finite volumes, used to satisfy the integral form of the equations, are elements of the mesh dual to the computational mesh, while for the CCFV approach the finite volumes are the mesh elements themselves. For both formulations, details are given of the development and application of a second-order well-balanced Godunov-type scheme, developed for the simulation of unsteady 2D flows over arbitrary topography with wetting and drying. The popular approximate Riemann solver of Roe is utilized to compute the numerical fluxes, while second-order spatial accuracy is achieved with a MUSCL-type reconstruction technique. The Green-Gauss (G-G) formulation for gradient computations is implemented for both formulations, in order to maintain a common framework. Two different stencils for the G-G gradient computations in the CCFV formulation are implemented and tested. An edge-based limiting procedure is applied for the control of the total variation of the reconstructed field. This limiting procedure is proved to be effective for the NCFV scheme but inadequate for the CCFV approach. As such, a simple but very effective modification to the reconstruction procedure is introduced that takes into account geometrical characteristics of the computational mesh. In addition, consistent well-balanced second-order discretizations for the topography source term treatment and the wet/dry front treatment are presented for both FV formulations, ensuring absolute mass conservation, along with a stable friction term treatment.

Using a controlled environment for a fair comparison, a complete assessment of both FV formulations is attempted through rigorous individual and relative performance comparisons to the approximation of analytical benchmark solutions, as well as to experimental and field data. To this end, an extensive evaluation is performed using different time dependent and steady-state test cases that incorporate topography, wetting and drying process, different types of boundary conditions as well as friction. These test cases are chosen as to compare the performance and robustness of each formulation under certain conditions and evaluate the effectiveness of the proposed modifications. Emphasis to grid convergence studies is given, with the grids used to range from regular grids to irregular ones with random perturbations of nodes. The results indicate that the quality of the mesh has a major impact on the convergence performance of the CCFV method while the NCFV method exhibits a uniform behavior on the different grid types used. The proposed correction in the computation of the reconstructed values for the CCFV formulation greatly improves the convergence behavior to the formal order of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abgrall R (1994) On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation. J Comput Phys 114:45

    Article  MATH  MathSciNet  Google Scholar 

  2. Aftosmis M, Gaitone D, Tavares TS (1994) On the accuracy, stability and monotonicity of various reconstruction algorithms for unstructure meshes. AIAA paper 94-0415

  3. Aftosmis M, Gaitone D, Tavares TS (1995) Behavior of linear reconstruction techniques on unstructured meshes. AIAA J 33:2038

    Article  MATH  Google Scholar 

  4. Alcrudo F, Gil E (1999) The Malpasset dam-break case study. In: Proceeding of the 4rd CADAM workshop, Zaragoza

    Google Scholar 

  5. Aliabadi S, Akbar M, Patel R (2010) Hybrid finite element/volume method for shallow water equations. Int J Numer Methods Eng 83:2719

    Article  MathSciNet  Google Scholar 

  6. Ambati VR, Bokhove O (2007) Space-time discontinuous Galerkin finite element method for shallow water flows. J Comput Appl Math 204:452

    Article  MATH  MathSciNet  Google Scholar 

  7. Audusse E, Bristeau M-O (2005) A well-balanced positivity preserving second order scheme for shallow water flows on unstructured meshes. J Comput Phys 206:311

    Article  MATH  MathSciNet  Google Scholar 

  8. Aureli F, Maranzoni P, Ziveri C (2008) A weighted surface-depth gradient method for the numerical integration of the 2D shallow water equations with topography. Adv Water Resour 31:962

    Article  Google Scholar 

  9. Barth TJ, Ohlberger M (2004) Finite volume methods: foundation and analysis. In: Stein E, de Borst R, Hudges TR (eds) Encyclopedia of computational mechanics. Wiley, New York

    Google Scholar 

  10. Barth TJ (1992) Aspects of unstructured grids and finite volume solvers for the Euler and Navier-Stokes equations. In: Special course on unstructured grid methods for advection dominated flows, AGARD report, p 787

  11. Barth TJ (2003) Numerical methods and error estimation for conservation laws on structured and unstructured meshes. VKI computational fluid dynamics lecture series

    Google Scholar 

  12. Barth TJ, Jespersen DC (1989) The design and application of upwind schemes on unstructured meshes. AIAA paper 89-0366

  13. Batten P, Lambert C, Causon DM (1996) Positively conservative high-resolution convection schemes for unstructured elements. Int J Numer Methods Fluids 39:1821

    MATH  MathSciNet  Google Scholar 

  14. Baumbach K, Lukác̆ová-Medvidová (2008) On the comparison of evolution Galerkin and discontinuous Galerkin schemes. In: Jorgensen P, Shen X, Shu C-W, Yan N (eds) Recent advances in computational sciences. World Scientific, Singapore

    Google Scholar 

  15. Begnudelli L, Sanders BF (2006) Unstructured grid finite volume algorithm for shallow water flow and scalar transport with wetting and drying. ASCE J Hydraul Eng 132(4):371

    Article  Google Scholar 

  16. Berger M, Aftosmis MJ, Murman SM (2005) Analysis of slope limiters on irregular grids. AIAA paper 2005-0490, 43rd AIAA Aerospace Sciences Meeting and Exhibit: Reno, Nevada

  17. Bermudez A, Dervieux A, Desideri JA, Vázquez ME (1998) Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes. Comput Methods Appl Mech Eng 155(1–2):49

    Article  MATH  Google Scholar 

  18. Bermudez A, Vázquez-Cendón ME (1994) Upwind methods for hyperbolic conservation laws with source terms. Comput Fluids 23:1049

    Article  MATH  MathSciNet  Google Scholar 

  19. Blain CA, Massey TC (2005) Application of a coupled discontinuous Galerkin finite-element finite element shallow water model to coastal ocean dynamics. Ocean Model 10:283

    Article  Google Scholar 

  20. Blazek J (2006) Computational fluid dynamics. Elsevier, Amsterdam

    Google Scholar 

  21. Bokhove O (2005) Flooding and drying in discontinuous Galerkin finite-element discretizations of shallow-water equations. Part 1: One dimension. J Sci Comput 22(3):47

    Article  MathSciNet  Google Scholar 

  22. Bouchut F (2004) Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources. Birkhauser, Basel

    MATH  Google Scholar 

  23. Bova SW, Carey GF (1996) An entropy variable formulation and applications for the two-dimensional shallow water equations. Int J Numer Methods Fluids 23:26

    Article  MathSciNet  Google Scholar 

  24. Bradford SF, Sanders BF (2002) Finite-volume model for shallow-water flooding of arbitary torography. ASCE J Hydraul Eng 128:289

    Article  Google Scholar 

  25. Bristeau M-O, Coussin B (2001) Boundary conditions for the shallow water equations solved by kinetic schemes. Raport de Recherche No 4282, INRIA

  26. Brocchini M, Bernetti R, Mancinelli A, Albertini G (2001) An efficient solver for nearshore flows based on the WAF method. Coast Eng 43:105

    Article  Google Scholar 

  27. Brocchini M, Dodd N (2008) Nonlinear shallow water equations modeling for coastal engineering. J Waterw Port Coastal Ocean Eng 134:104

    Article  Google Scholar 

  28. Brufau P, García-Navarro P, Vázquez-Cendón ME (2004) Zero mass error using unsteady wetting-drying coditions in shallow flows over dry irregular topography. Int J Numer Methods Fluids 45:1047–1082

    Article  MATH  Google Scholar 

  29. Brufau P, Vázquez-Cendón ME, Gracía-Navarro P (2002) A numerical model for the flooding and drying of irregular domain. Int J Numer Methods Fluids 39:247

    Article  MATH  Google Scholar 

  30. Bryson S, Levy D (2005) Balanced central schemes for the shallow water equations on unstructured grids. SIAM J Sci Comput 27(2):532

    Article  MATH  MathSciNet  Google Scholar 

  31. Bunya S, Kubatko EJ, Westerink JJ, Dawson C (2009) A wetting and drying treatment for the Runge-Kutta discontinuous Galerkin solution to the shallow water equations. Comput Methods Appl Mech Eng 198:1548

    Article  MathSciNet  Google Scholar 

  32. Burguete J, Murillo J, Garcia-Navarro P (2006) Numerical boundary conditions for globally mass conservative methods to solve shallow-water equations and applied to river flow. Int J Numer Methods Fluids 51:585

    Article  MATH  MathSciNet  Google Scholar 

  33. Caleffi V, Valiani A, Zanni A (2003) Finite volume method for simulating extreme flood events in natural channels. J Hydraul Res 41:167

    Article  Google Scholar 

  34. Canestrelli A, Dumbster M, Siviglia A, Toro EF (2010) Well-balanced high-order centered schemes on unstructured meshes for shallow water equations with fixed and mobile bed. Adv Water Resour 33:291

    Article  Google Scholar 

  35. Castro CE, Kaser M, Toro EF (2009) Space-time adaptive numerical methods for geophysical applications. Philos Trans R Soc Phys Eng Sci 367:4613

    Article  MATH  MathSciNet  Google Scholar 

  36. Castro MJ, Ferreiro AM, García-Rodriguez JA, González-Vida JM, Macías J, Parés C, Vázquez-Cendón ME (2005) The numerical treatment of wet/dry fronts in shallow flows: application to one-layer and two-layer systems. Math Comput Model 42:419

    Article  MATH  Google Scholar 

  37. Castro MJ, González-Vida JM, Parés C (2006) Numerical treatment of wet/dry fronts in shallow flows with a modified Roe scheme. Math Models Methods Appl Sci 16:897

    Article  MATH  MathSciNet  Google Scholar 

  38. Casulli V, Zanolli P (2007) Comparing analytical and numerical solution of nonlinear two and three-dimensional hydrostatic flows. Int J Numer Methods Fluids 53:1049

    Article  MATH  MathSciNet  Google Scholar 

  39. Cea L, French JR, Vázquez-Cendón ME (2006) Numerical modelling of total flows in complex estuaries including turbulence: an unstructured finite volume solver and experimental validation. Int J Numer Methods Eng 67:1909

    Article  MATH  Google Scholar 

  40. Cea L, Puertas J, Vázquez-Cendón ME (2007) Depth averaged modelling of turbulent shallow water flow with wet-dry fronts. Arch Comput Methods Eng 14:303

    Article  MATH  MathSciNet  Google Scholar 

  41. Chidaglia J-M (1998) Flux schemes for solving nonlinear systems of conservation laws. In: Chattot JJ, Hafez M (eds) Proceedings of the meeting in honor of P.L. Roe, Arcachon, July 1998

    Google Scholar 

  42. Delis AI, Kazolea M, Kampanis NA (2008) A robust high resolution finite volume scheme for the simulation of long waves over complex domain. Int J Numer Methods Fluids 56:419

    Article  MATH  MathSciNet  Google Scholar 

  43. Delis AI, P Skeels C (1998) TVD schemes for open channel flow. Int J Numer Methods Fluids 26:791

    Article  MATH  Google Scholar 

  44. Diskin B, Thomas J (2008) Accuracy of gradient reconstructions on grids with high aspect ratio. NIA Report 2008-12, National Institute of Aerospace

  45. Diskin B, Thomas JL (2010) Comparison of node-centered and cell-centered unstructured finite volume discretizations: inviscid fluxes. AIAA paper 2010-1079, 48th AIAA Aerospace sciences meeting including the New Horizons Forum and Aerospace Exposition: Orlando, Florida

  46. Diskin B, Thomas JL, Nielsen EJ, Nishikawa H (2009) Comparison of node-centered and cell-centered unstructured finite volume discretizations. Part I: viscous fluxes. AIAA paper 2009-597, 47th AIAA Aerospace sciences meeting including the New Horizons Forum and Aerospace Exposition: Orlando, Florida

  47. Erduran KS, Kutija V, Hewett CJM (2002) Performance of finite volume solutions to the shallow water equations with shock-capturing schemes. Int J Numer Methods Fluids 40:1237

    Article  MATH  MathSciNet  Google Scholar 

  48. Ern A, Piperno S, Djadel K (2008) A well-balanced Runge-Kutta discontinuous Galerkin method for the shallow-water equations with flooding and drying. Int J Numer Methods Fluids 58:1

    Article  MATH  MathSciNet  Google Scholar 

  49. Gallardo JM, Parés C, Castro M (2007) On a well-balanced higher-order finite volume scheme for shallow water equations with topography and dry areas. J Comput Phys 227:574

    Article  MATH  MathSciNet  Google Scholar 

  50. Gallouet T, Herard J-M, Seguin N (2003) Some approximate Godunov schemes to compute shallow water equations with topography. Comput Fluids 32:479

    Article  MATH  MathSciNet  Google Scholar 

  51. George DL (2008) Augmented Riemann solvers for the shallow water equations over variable topography with steady states and inundation. J Comput Phys 227:3089

    Article  MATH  MathSciNet  Google Scholar 

  52. George DL Adaptive finite volume methods with well-balanced Riemann solvers for modeling floods in rugged terrain: application to the Malpasset dam-break flood (France, 1959). Int J Numer Methods Fluids, in press

  53. Godlewski E, Raviart PA (1995) Hyperbolic systems of conservation laws. Applied mathematical sciences, vol 118. Springer, Berlin

    Google Scholar 

  54. Godunov SK (1959) Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics. Mat Sb 47:271

    MathSciNet  Google Scholar 

  55. Goutal N (1999) The Malpasset dam failure—an overview and test case definition. In: Proceeding of the 4rd CADAM workshop, Zaragoza

    Google Scholar 

  56. Guinot V (2003) Riemann solvers and boundary conditions for two-dimensional shallow water simulations. Int J Numer Methods Fluids 41:1191

    Article  MATH  MathSciNet  Google Scholar 

  57. Harten A, Hyman P (1983) Self-adjusting grid methods for one-dimensional hyperbolic conservation laws. J Comput Phys 50:235

    Article  MATH  MathSciNet  Google Scholar 

  58. Hervouet J-M (2000) A high-resolution 2-d dam-break model using parallelization. Hydrol Process 14:2211

    Article  Google Scholar 

  59. Hervouet J-M (2007) Hydrodynamics of free surface flows: modelling with the finite element method. Wiley, New York

    Book  MATH  Google Scholar 

  60. Hervouet J-M, Petitjean A (1999) Malpasset dam-break revisited with 2-dimensional computations. J Hydraul Res 37:777

    Article  Google Scholar 

  61. Hirsch C (1990) Numerical computation of internal and external flows. Wiley, Chichester

    MATH  Google Scholar 

  62. Hubbard ME (1999) Multidimensional slope limiters for MUSCL-type finite volume schemes on unstructured grids. J Comput Phys 155:54

    Article  MATH  MathSciNet  Google Scholar 

  63. Hubbard ME, Dodd N (2002) A 2D numerical model of wave runup and overtoping. Coast Eng 47:1

    Article  Google Scholar 

  64. Hubbard ME, García-Navarro P (2000) Flux difference splitting and the balancing of source terms and flux gradients. J Comput Phys 165:2

    Article  Google Scholar 

  65. Hunter NM, Bates PD, Neelz S, Pender G, Villanueva I, Wright NG, Liang D, Falconer RA, Lin B, Waller S, Crossley AJ, Mason DC (2008) Benchmarking 2D hydraulic models for urban flood simulations. Proc Inst Civ Eng-Wat Mgmt 161:13

    Google Scholar 

  66. Idelson SR, On̆ate E (1994) Finite volumes and finite elements: Two good friends. Int J Numer Methods Eng 37:3323

    Article  Google Scholar 

  67. Kesserwani G, Liang QH, Vazquez J, Mose R (2010) Well-balancing issues related to the RKDG2 scheme for the shallow water equations. Int J Numer Methods Fluids 62:428

    MATH  MathSciNet  Google Scholar 

  68. Kubatko EJ, Westerink JJ, Dawson C (2006) hp discontinuous Galerkin methods for advection dominated problems in shallow water flow. Comput Methods Appl Mech Eng 196:437

    Article  MATH  Google Scholar 

  69. Kubatko SJ, Bunya E, Dawson C, Westerink C, Mirabito JJ (2009) A performance comparison of continuous and discontinuous finite element shallow water models. J Sci Comput 40:315

    Article  MATH  MathSciNet  Google Scholar 

  70. Kurganov A, Petrova G (2007) A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system. Commun Math Sci 5:133

    MATH  MathSciNet  Google Scholar 

  71. Lallemand MH (1988) Etude de schémas Runge-Kutta á 4 pas pour la résolution multigrille des équations d’Euler 2D. Raport de Recherche, INRIA

  72. Lallemand MH (1990) Dissipative properties of Runge-Kutta schemes with upwind spatial approximation for the Euler equations. Raport de Recherche No 1173, INRIA

  73. Leveque RJ (1998) Balancing source terms and flux gradients in high-resolution Godunov-type methods. J Comput Phys 24:346

    Article  MathSciNet  Google Scholar 

  74. LeVeque RJ (2002) Finite volume methods for hyperbolic problems. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  75. LeVeque RJ, George DL (2007) High-resolution finite volume methods for the shallow water equations with bathymetry and dry states. In: Yeh H, Liu PL, Synolakis CE (eds) Advanced numerical models for simulating tsunami waves and runup. Advances in coastal and ocean engineering, vol 10. World Scientific, Singapore

    Google Scholar 

  76. Liang D, Binliang L, Falconer RA (2007) Simulation of rapidly varying flow using an efficient TVD-MacCormack scheme. Int J Numer Methods Fluids 53:811

    Article  MATH  Google Scholar 

  77. Liang Q, Borthwick AGL (2009) Adapive quadtree simulation of shallow flows with wet-dry fronts over complex topography. Comput Fluids 38:221

    Article  MathSciNet  Google Scholar 

  78. Lukác̆ová-Medvidová M, Teschke U (2006) Comparison study of some finite volume and finite element methods for the shallow water equations with bottom topography and friction terms. Z Angew Math Mech 86:874

    Article  Google Scholar 

  79. Lynett PJ, Wu TR, Liu PL (2002) Modeling wave runup with depth integrated equations. Coast Eng 46:89

    Article  Google Scholar 

  80. Ma D-J, Sun D-J, Yin X-Y (2007) Hybrid finite element/volume method for shallow water equations. Int J Numer Methods Fluids 55:431

    Article  MATH  MathSciNet  Google Scholar 

  81. Marche F (2008) A simple well-balanced model for two-dimensional coastal engineering applications. In: Hyperbolic problems: theory, numerics, applications. Springer, Berlin/ Heidelberg, pp 271–283

    Chapter  Google Scholar 

  82. Marche F, Bonneton P, Fabrie P, Seguin N (2007) Evaluation of well-balanced bore-capturing schemes for 2D wetting and drying processes. Int J Numer Methods Fluids 53:867

    Article  MATH  MathSciNet  Google Scholar 

  83. Mavriplis DJ (2003) Revisiting the Least-squares procedure for gradient reconstruction on unstructured grids. NIA Report 2003-06, National Institute of Aerospace

  84. Mavriplis DJ (2007) Unstructured mesh discritizations and solvers for computational aerodynamics. In: 18th AIAA computational fluid dynamics conference AIAA 2007-3955

  85. Morton KW, Sonar T (2007) Finite volume methods for hyperbolic conservation laws. Acta Numer 16:155

    Article  MATH  MathSciNet  Google Scholar 

  86. Murillo J, Garcia-Navarro P, Burguete J (2009) Time step restrictions for well-balanced shallow water solutions in non-zero velocity steady states. Int J Numer Methods Fluids 60:1351

    Article  MATH  MathSciNet  Google Scholar 

  87. Murillo J, Garcia-Navarro P, Burguete J, Brufau P (2006) A conservative 2D model of inundation flow with solute transport over dry bed. Int J Numer Methods Fluids 52:1059

    Article  MATH  MathSciNet  Google Scholar 

  88. Murillo J, Garcia-Navarro P, Burguete J, Brufau P (2007) The influence of source terms on stability, accuracy and conservation in two-dimensional shallow flow simulation using triangular finite volumes. Int J Numer Methods Fluids 54:543

    Article  MATH  MathSciNet  Google Scholar 

  89. Namin M, Lin AA, Falconer B (2004) Modelling estuarine and coastal flows using an unstructured triangular finite volume algorithm. Adv Water Resour 27:1179

    Article  Google Scholar 

  90. Nikolos IK, Delis AI (2009) An unstructured node-centered finite volume scheme for shallow water flows with wet/dry fronts over complex topography. Comput Methods Appl Mech Eng 198:3723

    Article  MathSciNet  Google Scholar 

  91. Noelle S, Pankratz N, Puppo G, Natvig JR (2006) Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows. J Comput Phys 213:474

    Article  MATH  MathSciNet  Google Scholar 

  92. Rhebergen S, Bokhove O, van der Vegt JJW (2008) Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations. J Comput Phys 227:1887

    Article  MATH  MathSciNet  Google Scholar 

  93. Ribeiro FLB, Galeao AC, Landau L (2001) Edge-based finite element method for shallow water equations. Int J Numer Methods Fluids 36:659

    Article  MATH  MathSciNet  Google Scholar 

  94. Ricchiuto M, Abgrall R, Deconinck H (2007) Application of conservative residual distribution schemes to the solution of the shallow water equations on unstructured meshes. J Comput Phys 222:287

    Article  MATH  MathSciNet  Google Scholar 

  95. Ricchiuto M, Bollermann A (2008) Accuracy of stabilized residual distribution for shallow water flows including dry beds. In: Proceedings of the 12th international conference on hyperbolic problems: theory, numerics, applications (HYP08), Maryland, USA, June 2008

    Google Scholar 

  96. Ricchiuto M, Bollermann A (2009) Stabilized residual distribution for shallow water simulations. J Comput Phys 1071:1115

    MathSciNet  Google Scholar 

  97. Roe PL (1981) Aprroximate Riemann solvers, parameter vectors, and difference schemes. J Comput Phys 43:357

    Article  MATH  MathSciNet  Google Scholar 

  98. Roe PL (1992) Sonic flux formulae. SIAM J Sci Stat Comput 13:611

    Article  MATH  MathSciNet  Google Scholar 

  99. Rogers BD, Borthwick AGL, Taylor PH (2003) Mathematical balancing of flux gradient and source terms prior to using Roe’s approximate Riemann solver. J Comput Phys 192:422

    Article  MATH  MathSciNet  Google Scholar 

  100. Selmin V (1993) The node-centered finite volume approach: bridge between finite differences and finite elements. Comput Methods Appl Mech Eng 102:107

    Article  MATH  Google Scholar 

  101. Serrano-Pacheco A, Murrillo J, Garcia-Navarro P (2009) Finite volume method for the simulation of the waves generated by landslides. J Hydrol 373:273

    Article  Google Scholar 

  102. Sivakumar P, Hyams DG, Taylor LK, Briley WR (2009) A primitive-variable Riemann method for solution of the shallow water equations with wetting and drying. J Comput Phys 228:7452

    Article  MATH  MathSciNet  Google Scholar 

  103. Sun M, Takayama K (2003) Error localization in solution-adaptive grid methods. J Comput Phys 190:346

    Article  MATH  MathSciNet  Google Scholar 

  104. Sweby PK (1984) High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J Numer Anal 21:995

    Article  MATH  MathSciNet  Google Scholar 

  105. Thacker WC (1981) Some exact solutions to the nonlinear shallow water wave equations. J Fluid Mech 107:499

    Article  MATH  MathSciNet  Google Scholar 

  106. Thomas JL, Diskin B, Rumsey CL (2008) Towards verification of unstructured-grid solvers. AIAA paper 2008-666, 46th AIAA Aerospace sciences meeting and exhibit: Reno, Nevada

  107. Toro EF (1997) Riemann solvers and numerical methods for fluid dynamics. Springer, Berlin

    MATH  Google Scholar 

  108. Toro EF (2001) Shock-capturing methods for free surface shallow flows. Wiley, Chichester

    MATH  Google Scholar 

  109. Toro EF, Garcia-Navarro P (2007) Godunov-type methods for free-surface shallow flows: a review. J Hydraul Res 45:736

    Article  Google Scholar 

  110. Toro EF, Titarev V (2006) Derivative Riemann solvers for systems of conservation laws and ADER methods. J Comput Phys 212:150

    Article  MATH  MathSciNet  Google Scholar 

  111. Valiani A, Begnudelli L (2006) Divergence form for the bed slope source term in shallow water equations. ASCE J Hydraul Eng 132(7):652

    Article  Google Scholar 

  112. Valiani A, Caleffi V, Zanni A (2002) Case study: Malpasset dam-break simulation using a two-dimensional finite volume method. ASCE J Hydraul Eng 128:460

    Article  Google Scholar 

  113. Van Albada GD, Van Leer B, Roberts WW (1982) A comparative study of computational methods in cosmic gas dynamics. Astron Astrophys 108:46–84

    Google Scholar 

  114. van Leer B (1979) Towards the ultimate conservative difference scheme V. A second order sequel to Godunov’s method. J Comput Phys 32:101

    Article  Google Scholar 

  115. van Leer B (2006) Upwind and high-resolution methods for compressible flow: from donor cell to residual-disrtibution schemes. Commun Comput Phys 1, 192–206

    Google Scholar 

  116. Venkatakrishan V (1993) On the accuracy of limiters and convergence to steady state solutions. AIAA paper 1993-0880

  117. Vingoli G, Titarev VA, Toro EF (2008) ADER schemes for the shallow water equations in channel with irregular bottom elevation. J Comput Phys 227:2463

    Article  MathSciNet  Google Scholar 

  118. Wang J-W, Liu R-X (2005) Combined finite volume-finite element method for shallow water equations. Comput Fluids 34:1199

    Article  MATH  Google Scholar 

  119. Xing J, Shu CW (2005) High-order finite difference WENO schemes with exact conservation property for the shallow water equations. J Comput Phys 208:206

    Article  MATH  MathSciNet  Google Scholar 

  120. Ying X, Wang SSY, Khan AA (2003) Numerical simulation of flood inundation due to dam and levee breach. In: Bizier P, DeBarry P (eds) World water and environmental resources congress 2003. ASCE, p 366

    Google Scholar 

  121. Zhou JG, Causon DM, Ingram DM, Mingham CJ (2002) Numerical solutions of the shallow water equations with discontinuous bed topography. Int J Numer Methods Fluids 38:769

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Delis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delis, A.I., Nikolos, I.K. & Kazolea, M. Performance and Comparison of Cell-Centered and Node-Centered Unstructured Finite Volume Discretizations for Shallow Water Free Surface Flows. Arch Computat Methods Eng 18, 57–118 (2011). https://doi.org/10.1007/s11831-011-9057-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-011-9057-6

Keywords

Navigation