Skip to main content
Log in

Mooreamide A: A Cannabinomimetic Lipid from the Marine Cyanobacterium Moorea bouillonii

  • Original Article
  • Published:
Lipids

Abstract

Bioassay-guided fractionation of a collection of Moorea bouillonii from Papua New Guinea led to the isolation of a new alkyl amide, mooreamide A (1), along with the cytotoxic apratoxins A–C and E. The planar structure of 1 was elucidated by NMR spectroscopy and mass spectrometry analysis. Structural homology between mooreamide A and the endogenous cannabinoid ligands, anandamide, and 2-arachidonoyl glycerol inspired its evaluation against the neuroreceptors CB1 and CB2. Mooreamide A was found to possess relatively potent and selective ligand binding activity to CB1 (K 1 = 0.47 µM) versus CB2 (K 1 > 25 µM). This represents the most potent marine-derived CB1 ligand described to date and adds to the growing family of marine metabolites that exhibit cannabinomimetic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

2-AG:

2-Arachidonoyl glycerol

AEA:

Anandamide

CDCl3 :

Deuterated chloroform

CH2Cl2 :

Dichloromethane

CNS:

Central nervous system

COSY:

Correlation spectroscopy

ECS:

Endocannabinoid system

EtOAc:

Ethyl acetate

ESIMS:

Electrospray ionization mass spectrometry

FT:

Fourier transform

GPCR:

G protein-coupled receptor

HMBC:

Heteronuclear multiple bond correlation

HPLC:

High performance liquid chromatography

HR:

High resolution

HSQC:

Heteronuclear single quantum correlation

IR:

Infrared

LR:

Low resolution

MeCN:

Acetonitrile

MeOH:

Methanol

NMR:

Nuclear magnetic resonance

NOESY:

Nuclear Overhauser effect spectroscopy

NP:

Normal phase

OLS:

Olefin synthase

RP:

Reverse phase

SAM:

S-Adenosyl methionine

SCUBA:

Self-contained underwater breathing apparatus

SPE:

Solid phase extraction

UV:

Ultraviolet

Wt:

Weight

References

  1. Nunnery JK, Mevers E, Gerwick WH (2010) Biologically active secondary metabolites from marine cyanobacteria. Curr Opin Biotechnol 21:787–793. doi:10.1016/j.copbio.2010.09.019

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Tan LT (2010) Filamentous tropical marine cyanobacteria: a rich source of natural products for anticancer drug discovery. J Appl Phycol 22:659–676. doi:10.1007/s10811-010-9506-x

    Article  CAS  Google Scholar 

  3. Tidgewell K, Clark BR, Gerwick WH (2010) The natural products chemistry of cyaonobacteria. In: Crews P (ed) Moore, B. Comprehensive Natural Products Chemistry II, Elsevier Oxford

    Google Scholar 

  4. Gerwick WH, Moore BS (2012) Lessons from the past and charting the future of marine natural product drug discovery and chemical biology. Chem Biol 19:85–98. doi:10.1016/j.chembiol.2011.12.014

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Elphick MR, Egertová M (2001) The neurobiology and evolution of cannabinoid signalling. Phil Trans R Soc Lond B 356:381–408. doi:10.1098/rstb.2000.0787

    Article  CAS  Google Scholar 

  6. Williams CM, Kirkham TC (1999) Anandamide induces overeating: mediation by central cannabinoid (CB1) receptors. Psychopharmacology 143:315–317. doi:10.1007/s002130050953

    Article  PubMed  CAS  Google Scholar 

  7. Ramos JA, Gómez M, de Miguel R (2005) Effects on development. In: Pertwee RG (ed) Cannabinoids. Springer, Berlin Heidelberg

    Google Scholar 

  8. Riedel G, Davies SN (2005) Cannabinoid function in learning, memory and plasticity. In: Pertwee RG (ed) Cannabinoids. Springer, Berlin Heidelberg

    Google Scholar 

  9. Walker JM, Hohmann AG (2005) Cannabinoid mechanisms of pain suppression. In: Pertwee RG (ed) Cannabinoids. Springer, Berlin Heidelberg

    Google Scholar 

  10. Guzmán M (2003) Cannabinoids: potential anticancer agents. Nat Rev Cancer 3:745–755. doi:10.1038/nrc1188

    Article  PubMed  Google Scholar 

  11. Di Marzo V, Piscitelli F, Mechoulam R (2011) Cannabinoids and endocannabinoids in metabolic disorders with focus on diabetes. In: Schwanstecher M (ed) Diabetes – perspectives in drug therapy. Springer, Heidelberg

    Google Scholar 

  12. Soderstrom K, Murray TF, Yoo HD, Ketchum S, Milligan K, Gerwick WH, Ortega MJ, Salva J (1997) Discovery of Novel cannabinoid receptor ligands from diverse marine organisms. In: Sinzinger H, Samuelsson B, Vane JR, Paoletti R, Ramwell P, Wong PYK (eds) Recent advances in prostaglandin, thromboxane, and leukotriene research. Plenum Press Div, New York

    Google Scholar 

  13. Montaser R, Paul VJ, Luesch H (2012) Marine cyanobacterial fatty acid amides acting on cannabinoid receptors. Chem Bio Chem 13:2676–2681. doi:10.1002/cbic.201200502

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Luesch H, Yoshida WY, Moore RE, Paul VJ, Corbett TH (2001) Total structure determination of apratoxin A, a potent novel cytotoxin from the marine cyanobacterium Lyngbya majuscula. J Am Chem Soc 123:5418–5423. doi:10.1021/ja010453j

    Article  PubMed  CAS  Google Scholar 

  15. Luesch H, Yoshida WY, Moore RE, Paul VJ (2002) New apratoxins of marine cyanobacterial origin from Guam and Palau. Bioorg Med Chem 10:1973–1978. doi:10.1016/S0968-0896(02)00014-7

    Article  PubMed  CAS  Google Scholar 

  16. Matthew S, Schupp PJ, Luesch H (2008) Apratoxin E, a cytotoxic peptolide from a guamanian collection of the marine cyanobacterium Lyngbya bouillonii. J Nat Prod 71:1113–1116. doi:10.1021/np700717s

    Article  PubMed  CAS  Google Scholar 

  17. Melck D, Bisogno T, De Petrocellis L, Chang H, Julius D, Bifulco M, Di Marzo V (1999) Unsaturated long-chain N-Acyl-vanillylamides (N-AVAMs): vanilloid receptor ligans that inhibit anandamide-facilitated transport and bind to cb1 cannabinoid receptors. Biochem Biophys Res Commun 262:275–284. doi:10.1006/bbrc.1999.1105

    Article  PubMed  CAS  Google Scholar 

  18. Pereira AR, McCue CF, Gerwick WH (2010) Cyanolide A, a glycosidic macrolide with potent molluscicidal activity from the Papua New Guinea cyanobacterium Lyngbya bouillonii. J Nat Prod 73:217–220. doi:10.1021/np9008128

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Pretsch E, Bühlmann P, Badertscher M (2009) Structure determination of organic compounds: tables of spectral data. Springer, Berlin

    Google Scholar 

  20. Crews P, Kho-Wiseman E (1978) Stereochemical assignment in marine natural products by 13C NMR γ effects. Tetrahedron Lett 19:2483–2486. doi:10.1016/S0040-4039(01)94806-3

    Article  Google Scholar 

  21. Timmers MA, Dias DA, Urban S (2012) Application of HPLC-NMR in the identification of plocamenone and Isoplocamenone from the Marine Red Alga Plocamium angustum. Mar Drugs 10:2089–2102. doi:10.3390/md10092089

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Gutierrez M, Pereira AR, Debonsi HM, Ligresti A, Di Marzo V, Gerwick WH (2011) Cannabinominmetic lipid from a marine cyanobacterium. J Nat Prod 74:2313–2317. doi:10.1021/np200563x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Han B, McPhail KL, Ligresti A, Di Marzo V, Gerwick WH (2003) Semiplenamides A-G, fatty acid amides from a Papua New Guinea collection of the marine cyanobacterium Lyngbya semiplena. J Nat Prod 66:1364–1368. doi:10.1021/np030242n

    Article  PubMed  CAS  Google Scholar 

  24. Sitachitta N, Gerwick WH (1998) grenadadiene and grenadamide, cyclopropyl-containing fatty acid metabolites from the marine cyanobacterium Lyngbya majuscula. J Nat Prod 61:681–684. doi:10.1021/np970576a

    Article  PubMed  CAS  Google Scholar 

  25. Dewick PM (2009) Medicinal natural products: a biosynthetic approach. Wiley, West Sussex

    Book  Google Scholar 

  26. Edwards DJ, Marquez BL, Nogle LM, McPhail K, Goeger DE, Roberts MA, Gerwick WH (2004) Structure and biosynthesis of the jamaicamides, new mixed polyketide-peptide neurotoxins from the marine cyanobacterium Lyngbya majuscule. Chem Biol 11:817–833. doi:10.1016/j.chembiol.2004.03.030

    Article  PubMed  CAS  Google Scholar 

  27. Dorrestein PC, Blackhall J, Straight PD, Fischbach MA, Garneau-Tsodikova S, Edwards DJ, McLaughlin S, Lin M, Gerwick WH, Kolter R, Walsh CT, Kelleher NL (2006) Activity screening of carrier domains within nonribosomal peptide synthetases using complex substrate mixtures and large molecule mass spectrometry. Biochemistry 45:1537–1546. doi:10.1021/bi052333k

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. McCarthy JG, Eisman EB, Kulkarni S, Gerwick L, Gerwick WH, Wipf P, Sherman DH, Smith JL (2012) Structural basis of functional group activation by sulfotransferases in complex metabolic pathways. ACS Chem Biol 7:1994–2003. doi:10.1021/cb300385m

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Gu L, Wang B, Kulkarni A, Gehret JJ, Lloyd KR, Gerwick L, Gerwick WH, Wipf P, Håkansson K, Smith JL, Sherman DH (2009) Polyketide decarboxylative chain termination proceed by O-Sulfonation in curacin A biosynthesis. J Am Chem Soc 131:16033–16035. doi:10.1021/ja9071578

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Chabra A, Haque AS, Pal RK, Goyal A, Rai R, Joshi S, Panjikar S, Pasha S, Sankaranarayanan R, Gokhale RS (2012) Nonprocessive [2 + 2]e off-loading reductase domains from mycobacterial nonribosomal peptide synthetases. Proc Natl Acad Sci USA 109:5681–5686. doi:10.1073/pnas.1118680109

    Article  Google Scholar 

  31. Grindberg RV, Ishoey T, Brinza D, Esquenazi E, Coates RC, Liu WT, Gerwick L, Dorrestein PC, Pevzner P, Lasken R, Gerwick WH (2011) Single cell genome amplification accelerates indentification of the apratoxin biosynthetic pathway from a complex microbial assemblage. PLoS One 6:e18565. doi:10.1371/journal.pone.0018565

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Elphick MR (2012) The Evolution and comparative neurobiology of endocannabinoid signaling. Phil Trans R Soc B 367:1607–3201. doi:10.1098/rstb.2011.0394

    Article  Google Scholar 

Download references

Acknowledgments

We thank the government of Papua New Guinea for the permission to collect the cyanobacterial specimens. We thank the UCSD Chemistry and Biochemistry mass spectrometry facilities for their analytical services. The 500 MHz NMR 13C XSens cold probe was supported by NSF CHE-0741968. We also acknowledge The Growth Regulation & Oncogenesis Training Grant NIH/NCI (T32A009523-24) for a fellowship to E. M., and NIH Grants (CA100851, NS053398) for support of the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William H. Gerwick.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 512 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mevers, E., Matainaho, T., Allara’, M. et al. Mooreamide A: A Cannabinomimetic Lipid from the Marine Cyanobacterium Moorea bouillonii . Lipids 49, 1127–1132 (2014). https://doi.org/10.1007/s11745-014-3949-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-014-3949-9

Keywords

Navigation