Skip to main content
Log in

Dietary Fish Oil Supplements Increase Tissue n-3 Fatty Acid Composition and Expression of Delta-6 Desaturase and Elongase-2 in Jade Tiger Hybrid Abalone

  • Original Article
  • Published:
Lipids

Abstract

This study was conducted to investigate the effects of fish oil (FO) supplements on fatty acid composition and the expression of ∆6 desaturase and elongase 2 genes in Jade Tiger abalone. Five test diets were formulated to contain 0.5, 1.0, 1.5, 2.0 and 2.5% of FO respectively, and the control diet was the normal commercial abalone diet with no additional FO supplement. The muscle, gonad and digestive glands (DG) of abalone fed with all of the five test diets showed significantly high levels of total n-3 polyunsaturated fatty acid (PUFA), eicosapentaenoic acid (EPA), docosapentaenoic acid n-3 (DPAn-3), and docosahexaenoic acid (DHA) than the control group. In all three types of tissue, abalone fed diet supplemented with 1.5% FO showed the highest level of these fatty acids (P < 0.05). For DPAn-3 the higher level was also found in muscle and gonad of abalone fed diet supplemented with 2% FO (P < 0.05). Elongase 2 expression was markedly higher in the muscle of abalone fed diet supplemented with 1.5% FO (P < 0.05), followed by the diet containing 2% FO supplement. For ∆6 desaturase, significantly higher expression was observed in muscle of abalone fed with diet containing 0.5% FO supplement (P < 0.05). Supplementation with FO in the normal commercial diet can significantly improve long chain n-3 PUFA level in cultured abalone, with 1.5% being the most effective supplementation level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

FO:

Fish oil

DG:

Digestive gland

PUFA:

Polyunsaturated fatty acid(s)

EPA:

Eicosapentaenoic acid

DHA:

Docosahexaenoic acid

DPAn-3:

Docosapentaenoic acid, n-3

ALA:

Alpha-linolenic acid

LA:

Linoleic acid

ARA:

Arachidonic acid

MUFA:

Monounsaturated fatty acid(s)

SFA:

Saturated fatty acid(s)

FAME:

Fatty acid methyl ester(s)

RT-PCR:

Real-time polymerase chain reaction

References

  1. Breslow JL (2006) n-3 Fatty acids and cardiovascular disease. Am J Clin Nutr 83:1477S–1482S

    PubMed  CAS  Google Scholar 

  2. Rasmussen B, Vessby B, Uusitupa M, Berglund L, Pedersen E, Riccardi G, Rivellese AA, Tapsell L, Hermansen K (2006) Effects of dietary saturated, monounsaturated and n-3 fatty acids, on blood pressure in healthy subjects. Am J Clin Nutr 83:221–226

    PubMed  CAS  Google Scholar 

  3. Schwellenbach LJ, Olson KL, McConnell KJ, Stolcpart RS, Nash JD, Merenich JA, Clinical Pharmacy Cardiac Risk Service Study Group (2006) The triglyceride-lowering effects of a modest dose of docosahexaenoic acid alone vs in combination with low dose eicosapentaenoic acid alone versus in combination with low dose eicosapentaenoic acid in patients with coronary artery disease and elevated triglycerides. J Am Coll Nutr 25:480–485

    PubMed  CAS  Google Scholar 

  4. Kimura Y, Kono S, Toyomura K, Nagano J, Mizoue T, Moore MA, Mibu R, Tanaka M, Kakeji Y, Maehara Y, Okamura T, Ikejiri K, Futami K, Yasunami Y, Maekawa T, Takemaka K, Ichimiya H, Imaizumi N (2007) Meat, fish and fat intake in relation to subsite-specific risk colorectal cancer: The Fukuoka Colorectal Cancer Study. Cancer Sci 98:590–597

    Article  PubMed  CAS  Google Scholar 

  5. Kuriki K, Hirose K, Wakai K, Ito H, Suzuki T, Hiraki A, Saito T, Iwata H, Tatematsu M, Tajima K (2007) Breast cancer risk and erythrocyte compositions of n-3 highly unsaturated fatty acids in Japanese. Int J Cancer 121:377–385

    Article  PubMed  CAS  Google Scholar 

  6. Morris MC, Evans DA, Tangney CC, Bienias JL, Wilson RS (2005) Fish consumption and cognitive decline with age in a large community study. Arch Neurol 62:1849–1853

    Article  PubMed  Google Scholar 

  7. Su KP, Huang SY, Chiu TH, Huang KC, Huang CL, Chang HC, Pariante CM (2008) Omega-3 fatty acids for major depressive disorder during pregnancy: results from a randomized, double-blind, placebo-controlled trial. J Clin Psychiatry 69: 644–651

    Google Scholar 

  8. Hogstrom M, Nordstrom P, Nordstrom A (2007) n-3 Fatty acids are positively associated with peak bone mineral density and bone accrual in healthy men: the NO2 study. Am J Clin Nutr 85:803–807

    PubMed  Google Scholar 

  9. Dunstan GA, Valkman JK, Maguire GB (1999) Optimisation of essential lipids in artificial feeds for Australian abalone. Fisheries Research and Development Corporation Final Report. CSIRO marine research project no 94/85, 68

  10. Dunstan GA, Baillie HJ, Barrett SM, Volkman JK (1996) Effect of diet on the lipid composition of wild and cultured abalone. Aquaculture 140:115–127

    Article  CAS  Google Scholar 

  11. Nichols PD, Virtue P, Mooney BD, Elliott NG, Yearsley GK (1998) Seafood the good food: the oil (fat) content and composition of Australian commercial fisheries, shellfish and crustaceans. CSRO Marine Research

  12. Su XQ, Antonas KN, Li D (2004) Comparison of n-3 polyunsaturated fatty acid contents of wild and cultured Australian abalone. Int J Food Sci Nutr 55:148–154

    Article  Google Scholar 

  13. D’Abramo LR, Conklin DE, Akiyama DE (1997) Triacylglycerols and fatty acids. Crustacean nutrition. Advances in world aquaculture. The World Aquaculture Society 6:71–84

  14. Sargent JR, Tocher DR, Bell JG (2002) The lipids. Fish nutrition. Academic Press, San Diego, pp 181–257

    Google Scholar 

  15. Wei X, Kangsen M, Wenbing Z, Zhiguo L, Beping T, Hongming MA, Qinghui A (2004) Influence of dietary lipid sources on growth and fatty acid composition of juvenile abalone, Haliotis discus hannai Ino. J Shellfish Res 127:29–40

    Google Scholar 

  16. Durazo-Beltran, D’Abramo ELR, Toro-Vazquezc JF, Vasquez-Pelaezd C, Viana MT (2003) Effect of triacylglycerols in formulated diets on growth and fatty acid composition in tissue of green abalone (Haliotis fulgens). Aquaculture 224:257–270

  17. Zheng X, Tocher DR, Dickson CA, Bell JG, Teale AJ (2004) Effects of diets containing vegetable oil on expression of genes involved in highly unsaturated fatty acid biosynthesis in liver of Atlantic salmon (Salmo salar). Aquaculture 236:467–483

    Article  CAS  Google Scholar 

  18. Seiliez I, Panseat S, Kaushik S, Bergot P (2001) Cloning, tissue distribution and nutritional regulation of a Δ6-desaturase-like enzyme in rainbow trout. Comp Biochem Physiol 130B:83–93

    CAS  Google Scholar 

  19. Hastings N, Agaba M, Tocher DR, Leaver MJ, Dick JR, Sargent JR, Teale AJ (2001) A vertebrate fatty acid desaturase with Δ5 and Δ6 activities. Proc Natl Acad Sci USA 98:14304–14309

    Article  PubMed  CAS  Google Scholar 

  20. Hastings N, Agaba MK, Zheng X, Tocher DR, Dick JR, Dickson C, Teale AJ (2004) Molecular cloning and functional characterization of fatty acyl desaturase and elongase cDNAs involved in the production of eicosapentaenoic and docosahexanoic acids from α-linolenic acid in Atlantic salmon (Salmo salar). Mar Biotechnol 6:463–474

    Google Scholar 

  21. Agaba M, Tocher DR, Dickson CA, Dick JR, Teale AJ (2004) Zebra fish cDNA encoding multifunctional fatty acid elongase involved in production of eicosapentaenoic (20:5n–3) and docosahexaenoic (22:6n-3) acids. Mar Biotechnol 6:251–261

    Article  PubMed  CAS  Google Scholar 

  22. Agaba MK, Tocher DR, Zheng X, Dickson CA, Dick JR, Teale AJ (2005) Cloning and functional characterisation of polyunsaturated fatty acid elongases of marine and freshwater teleost fish. Comp Biochem Physiol B 142:342–352

    Article  PubMed  Google Scholar 

  23. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  24. Sinclair AJ, O’Dea K, Naughton JM (1983) Elevated levels of arachidonic acid in fish from Northern Australian coastal waters. Lipids 18:877–881

    Article  PubMed  CAS  Google Scholar 

  25. Schmittgen TD, Zakrajsek BA, Mills AG, Gorn V, Singer MJ, Reed MW (2000) Quantitative reverse transcription-polymerase chain reaction to study mRNA decay comparison of endpoint and real-time methods. Anal Biochem 285:194–204

    Article  PubMed  CAS  Google Scholar 

  26. Thongrod S, Tamtin M, Chairat C, Boonyaratpalin M (2003) Lipid to carbohydrate ratio in donkey’s ear abalone (Haliotis asinina, Linne) diets. Aquaculture 225:165–174

    Article  CAS  Google Scholar 

  27. Uki N, Kemuyama A, Watanabe T (1985) Development of semipurified test diets for abalone. Bull Jpn Soc Sci Fish 51:1825–1833

    Google Scholar 

  28. Delaunay F, Marty Y, Moal J, Cochard JC, Samain JF (1991) Fatty acid requirements of Pecten maximus larvae. Oceanus 17:287–288

    Google Scholar 

  29. Mai K, Mercer JP, Donlon J (1995) Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata L and Haliotis discus hannai Ino III. The role of polyunsaturated fatty acids of macroalgae in abalone nutrition. Aquaculture 134:65–80

    Article  CAS  Google Scholar 

  30. Fleming AE, Van Bernevald RJ, Hone PW (1996) The development of artificial diets for abalone: a review and future directions. Aquaculture 140:5–53

    Article  CAS  Google Scholar 

  31. Castanos M (1997) Abalone R and D at AQD. SEAFDEC Asian Aquaculture 19:18–23

    Google Scholar 

  32. Lee SM, Cho SH (2009) Influences of dietary fatty acid profile on growth, body composition and blood chemistry in juvenile fat cod (Hexagrammos otakii Jordan et Starks). Aqua Nutr 15:19–28

    Article  CAS  Google Scholar 

  33. Lee SM, Park HG (1998) Evaluation of dietary lipid sources for juvenile abalone (Haliotis discus hannai). J Aquacult 11:381–390

    Google Scholar 

  34. Van Barneveld RJ, Fleming AE, Vandepeer ME, Kruk JA, Hone PW (1998) Influence of dietary oil type and oil inclusion level in manufactured feeds on the digestibility of nutrients by juvenile greenlip abalone (Haliotis laevigata). J Shellfish Res 17:649–655

    Google Scholar 

  35. Boggio SM, Hard R, Babbitt JK, Brannon EL (1985) The influence of dietary lipid source and alpha-tocopheryl acetate level on product quality of rainbow trout (Salmo gairdneri). Aquaculture 51:13–24

    Article  CAS  Google Scholar 

  36. Waagbo R, Sandnes K, Torrissen OJ, Sandvin A, Lie Ø (1993) Chemical and sensory evaluation of fillets from Atlantic salmon (Salmo salar) fed three levels of n-3 polyunsaturated fatty acids at two levels of vitamin E. Food Chem 46:361–366

    Article  Google Scholar 

  37. Bell JG, McEvoy J, Tocher DR, McGhee F, Campbell PJ, Sargent JR (2001) Replacement of fish oil with rapeseed oil in diets of Atlantic salmon (Salmo salar) affects tissue lipid compositions and hepatocyte fatty acid metabolism. J Nutr 131:1535–1543

    PubMed  CAS  Google Scholar 

  38. Bell JG, Henderson RJ, Tocher DR, McGhee F, Dick JR, Porter A, Smullen RP, Sargent JR (2002) Substituting fish oil with crude palm oil in the diet of Atlantic salmon (Salmo salar) affects muscle fatty acid composition and hepatic fatty acid metabolism. J Nutr 132:222–230

    PubMed  CAS  Google Scholar 

  39. Turchini GM, Mentasti T, Froyland L, Orban E, Caprino F, Moretti VM, Valfre F (2003) Effects of alternative dietary lipid sources on performance, tissue chemical composition, mitochondrial fatty acid oxidation capabilities and sensory characteristics in brown trout (Salmo trutta L.). Aquaculture 225:251–267

    Article  CAS  Google Scholar 

  40. Fonseca-Madrigal J, Karalazos V, Campbell PJ, Bell JG, Tocher DR (2005) Influence of dietary palm oil on growth, tissue fatty acid compositions, and fatty acid metabolism in liver and intestine in rainbow trout (Oncorhynchus mykiss). Aqua Nutr 11:241–250

    Article  CAS  Google Scholar 

  41. Higgs DA, Balfry SK, Oakes JD, Rowshandeli M, Skura BJ, Deacon G (2006) Efficacy of an equal blend of canola oil and poultry fat as an alternate dietary lipid source for Atlantic salmon (Salmo salar L.) in sea water. I: effects on growth performance, and whole body and fillet proximate and lipid composition. Aquac Res 37:180–191

    Article  CAS  Google Scholar 

  42. Ng WK, Sigholt T, Bell JG (2004) The influence of environmental temperature on the apparent nutrient and fatty acid digestibility in Atlantic salmon (Salmo salar L.) fed finishing diets containing different blends of fish oil, rapeseed oil and palm oil. Aquac Res 35:1228–1237

    Article  CAS  Google Scholar 

  43. Rosenlund G, Obach A, Sandberg MG, Standal H, Tveit K (2001) Effect of alternative lipid sources on long-term growth performance and quality of Atlantic salmon (Salmo salar L.). Aquac Res 32:323–328

    Article  CAS  Google Scholar 

  44. Tortensen BE, Lie O, Froyland L (2000) Lipid metabolism and tissue composition in Atlantic salmon (Salmo salar L.)—effects of capelin oil, palm oil and oleic acid-enriched sunflower oil as dietary lipid sources. Lipids 35:653–664

    Article  Google Scholar 

  45. Nelson MM, Leighton DL, Phleger CH, Nichols PD (2002) Comparison of growth & lipid composition in the green abalone, Haliotis fulgens, provided specific macroalgal diets. Comp Biochem Physiol 131B:695–712

    CAS  Google Scholar 

  46. Uki N, Kemuyama A, Watanake T (1986) Requirement of essential fatty acid in the abalone Haliotis discus hannaii. Bull Jpn Soc Sci Fish 52:1013–1023

    CAS  Google Scholar 

  47. Grubert MA, Dunstan GA, Rita AJ (2004) Lipid and fatty acid composition of pre- and post-spawning blacklip (Haliotis rubra) and greenlip (Haliotis laevigata) abalone conditioned at two temperatures on a formulated feed. Aquaculture 242:297–311

    Article  CAS  Google Scholar 

  48. Miller MR, Bridle AR, Nichols PD, Carter CG (2008) Increased elongase and desaturase gene expression with stearidonic acid enriched diet does not enhance long-chain (n-3) content of seawater Atlantic salmon (Salmo salar L.). J Nutr Nutrient Physiol Metab Nutr-Nutr Interact 138:2179–2185

    Google Scholar 

  49. Turchini GM, Francis DS, De Silva SS (2006) Fatty acid metabolism in the freshwater fish Murray cod (Maccullochella peelii peelii) deduced by the whole-body fatty acid balance method. Comp Biochem Physiol B 144:110–118

    Article  PubMed  Google Scholar 

  50. Rawn JD (1989) Biochemistry. Neil Patterson Publishers, Burlington

  51. Jump DB, Clarke SD, Thelen A, Liimatta M, Ren B, Badin M (1996) Dietary polyunsaturated fatty acid regulation of gene transcription. Prog Lipid Res 35:227–241

    Article  PubMed  CAS  Google Scholar 

  52. Zheng X, Torstensen BE, Tocher DR, Dick JR, Henderson RJ, Bell JG (2005) Environmental and dietary influences on highly unsaturated fatty acid biosynthesis and expression of fatty acyl desaturase and elongase genes in liver of Atlantic salmon (Salmo salar). Biochim Biophys Acta 1734:13–24

    PubMed  CAS  Google Scholar 

  53. Ling S, Kuah M-K, Tengku Muhammad TS, Kolkovski S, Shu-Chien A (C2006) Effect of dietary HUFA on reproductive performance, tissue fatty acid profile and desaturase and elongase mRNAs in female swordtail Xiphophorus helleri. Aquaculture 26:204–214

    Google Scholar 

  54. Jaya-Ram A, Kuah M-K, Lim P-S, Kolkovski S, Shu-Chien AC (2008) Influence of dietary HUFA levels on reproductive performance, tissue fatty acid profile and desaturase and elongase mRNAs expression in female zebrafish Danio rerio. Aquaculture 277:275–281

    Article  CAS  Google Scholar 

  55. Kennedy SR, Leaver MJ, Campbell PJ, Zheng X, Dick JR, Tocher DR (2006) Influence of dietary oil content and conjugated linoleic acid (CLA) on lipid metabolism enzyme activities and gene expression in tissues of Atlantic Salmon (Salmo salar L.). Lipids 41:423–436

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded by a postgraduate scholarship at Victoria University, Australia. We thank the Great Southern Waters abalone farm, Victoria, Australia for suppling abalone samples and ADAM and AMOS Pty Ltd, SA, Australia for their assistance in formulating the experimental diets. The authors also thank Melrose Laboratories Pty Ltd, Victoria, Australia for the supply of fish oil, and Assoc. Prof. David Cameron-Smith, Deakin University, Victoria, Australia for providing the PCR primers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Q. Su.

About this article

Cite this article

Mateos, H.T., Lewandowski, P.A. & Su, X.Q. Dietary Fish Oil Supplements Increase Tissue n-3 Fatty Acid Composition and Expression of Delta-6 Desaturase and Elongase-2 in Jade Tiger Hybrid Abalone. Lipids 46, 741–751 (2011). https://doi.org/10.1007/s11745-011-3565-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-011-3565-x

Keywords

Navigation