Skip to main content
Log in

Effects of nitric oxide on the germination of cucumber seeds and antioxidant enzymes under salinity stress

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Effects of exogenous nitric oxide (NO) on the germination and antioxidant enzyme during cucumber seed germination were investigated under salt stress. Seeds of cucumber (Cucumis sativus L. cv. Jinyou 1) were treated with distilled water or NaCl in the presence or absence of NO donor sodium nitroprusside (SNP) during germination. Excess 50 mM NaCl reduced significantly the seed germination rate in a short term and speed of germination. When salt concentration increased, germination of cucumber seed was reduced and the time needed to complete germination lengthened. Addition of exogenous SNP in salt solution attenuated the salt stress effects in a dose-dependent manner, as indicated by accelerating the seed germination, as well as weight increase of budding seeds, and 50 μM SNP was optimal concentration. At 150 mM NaCl, the 50 μM exogenous SNP significantly increased the activities of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6) and protein content, while decreased the contents of malondialdehyde (MDA). There were no obvious effects of exogenous NO on peroxidase (POD, EC 1.11.1.6) and ascorbate peroxidase (APX, EC 1.11.1.6) activities under salt stress. Exogenous NO also increased the SOD and CAT isozyme expression under salt stress, which was in accordance with the improved antioxidant activities in the germinating seeds. The NO-induced salt stress resistance was associated with activated enzymes, and enhanced protein content, thus decreasing MDA content. It is concluded that exogenous NO treatment on cucumber seeds may be a good option to improve seed germination under saline conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

CAT:

Catalase

H2O2 :

Hydrogen peroxide

MDA:

Malondialdehyde

NO:

Nitric oxide

O .−2 :

Superoxide radical

PAGE:

Polyacrylamide gel electrophoresis

POD:

Peroxidase

PSWRBT:

Percentage of the number of seeds with radicals breaking through testa

RHRS:

Ratio of the length of hypocotyls and radicals to the length of seeds

ROS:

Reactive oxygen species

SNP:

Sodium nitroprusside

SOD:

Superoxide dismutase

References

  • Abogadallah GM, Serag MM, El-Katouny TM, Quick WP (2010) Salt tolerance at germination and vegetative growth involves different mechanisms in barnyard grass (Echinochloa crusgalli L.) mutants. Plant Growth Regul 60:1–12

    Article  CAS  Google Scholar 

  • Ahammed GJ, Zhang S, Shi K, Zhou YH, Yu JQ (2012) Brassinosteroid improves seed germination and early development of tomato seedling under phenanthrene stress. Plant Growth Regul. doi:10.1007/s10725-012-9696-0

    Google Scholar 

  • Allen RD (1995) Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol 107:1049–1054

    PubMed  CAS  Google Scholar 

  • Almansouri M, Kinet JM, Lutts S (2001) Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil 231:243–254

    Article  CAS  Google Scholar 

  • Almeselmani M, Deshmukh PS, Sairam RK, Kushwaha SR, Singh TP (2006) Protective role of antioxidant enzymes under high temperature stress. Plant Sci 171:382–388

    Article  PubMed  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Arasimowica-Jelonek M, Floryszak-Wieczorek J, Kubiś J (2009) Involvement of nitric oxide in water stress-induced responses of cucumber roots. Plant Sci 177:682–690

    Article  Google Scholar 

  • Arasimowicz M, Floryszak-Wieczorek J (2007) Nitric oxide as a bioactive signalling molecule in plant stress responses. Plant Sci 172:876–887

    Article  CAS  Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93

    Article  PubMed  CAS  Google Scholar 

  • Ashraf M, Ali Q (2008) Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L). Environ Exp Bot 63:266–273

    Article  CAS  Google Scholar 

  • Baatour O, Kaddour R, Wannes WA, Lachaâl M, Marzouk B (2010) Salt effects on the growth, mineral nutrition, essential oil yield and composition of marjoram (Origanum majorana). Acta Physiol Plant 32:45–51

    Article  CAS  Google Scholar 

  • Barbafieri M, Tassi E (2011) Brassinosteroids for phytoremediation application. In: Hayat S, Ahmad A (eds) Brassinosteroids: a class of plant hormone. Springer, Netherlands, pp 403–437

    Chapter  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  PubMed  CAS  Google Scholar 

  • Beligni MV, Lamattina L (2000) Nitric oxide induces seed germination and de etiolation, and inhibits hypocotyls elongation, three light-inducible responses in plants. Planta 210:215–221

    Article  PubMed  CAS  Google Scholar 

  • Beligni MV, Fath A, Bethke PC, Lamattina L, Jones RL (2002) Nitric oxide acts as an antioxitant and delays programmed cell death in barley aleurone layers. Am Soc Plant Biol 129:1642–1650

    CAS  Google Scholar 

  • Bethke PC, Libourel IGL, Jones RL (2007) Nitric oxide in seed dormancy and germination. In: Bradford K, Nonogaki H (eds) Seed development, dormancy and germination. Blackwell Publishing, Oxford, pp 153–175

    Chapter  Google Scholar 

  • Bor M, Özdemir F, Turkan I (2003) The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Sci 164:77–84

    Article  CAS  Google Scholar 

  • Bowler C, Montagu MV, Inźe D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascrobate peroxidase, and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227

    Article  PubMed  CAS  Google Scholar 

  • Cesur A, Tabur S (2011) Chromotoxic effects of exogenous hydrogen peroxide (H2O2) in barley seeds exposed to salt stress. Acta Physiol Plant 33:705–709

    Article  CAS  Google Scholar 

  • Crawford NM, Guo FQ (2005) New insights into nitric oxide metabolism and regulatory functions. Trends Plant Sci 10:195–200

    Article  PubMed  CAS  Google Scholar 

  • Dalton DA, Joyner SL, Becana M, Iturbe-Ormaetxe I, Chatfield JM (1998) Antioxidant defenses in the peripheral cell layers of legume root nodules. Plant Physiol 116:37–43

    Article  PubMed  CAS  Google Scholar 

  • Delledonne M (2005) NO news is good news for plants. Curr Opin Plant Biol 8:390–396

    Article  PubMed  CAS  Google Scholar 

  • Delledonne M, Xia YJ, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    Article  PubMed  CAS  Google Scholar 

  • Demiral T, Türkan I (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53:247–257

    Article  CAS  Google Scholar 

  • Egley GH, Paul RN, Vaughn KC, Duke SO (1983) Role of peroxidase in the development of water-impermeable seed coats in Sida spinosa L. Planta 157:224–232

    Article  CAS  Google Scholar 

  • Farooq M, Basra SMA, Wahid A, Rehman H (2009) Exogenously applied nitric oxide enhances the drought tolerance in fine grain aromatic rice (Oryza sativa L.). J Agron Crop Sci 195:254–261

    Article  CAS  Google Scholar 

  • Fielding JL, Hall JL (1978) A biochemical and cytochemical study of peroxidase activity in roots of Pisum ativum. J Expt Bot 29:969–981

    Article  CAS  Google Scholar 

  • Garg N, Manchanda G (2009) ROS generation in plants: boon or bane? Plant Biosyst 143:81–96

    Article  Google Scholar 

  • Giannopotitis CN, Ries SK (1977) Superoxide dismutase in higher plants. Plant Physiol 59:309–314

    Article  Google Scholar 

  • Gottlieb LD, Weeden NF (1981) Correlation between subcellular location and phosphoglucose isomerase variability. Evolution 35:1019–1022

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts I kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  PubMed  CAS  Google Scholar 

  • Huh GH, Lee SJ, Bae YS, Liu JR, Kwak SS (1997) Molecular cloning and characterization of cDNAs for anionic and neutral peroxidases from suspension-cultured cells of sweet potato and their differential expression in response to stress. Mol Gen Genet 255:382–391

    Article  PubMed  CAS  Google Scholar 

  • Jain M, Mathur G, Koul S, Sarin NB (2001) Ameliorative effects of proline on salt stressed lipid peroxidation in cell lines of groundnut (Arachis hypogae L.). Plant Cell Rep 20:463–468

    Article  CAS  Google Scholar 

  • Job C, Rajjou L, Lovigny Y, Belghazi M, Job D (2005) Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiol 138:790–802

    Article  PubMed  CAS  Google Scholar 

  • Kopyra M, Gwóźdź EA (2003) Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol Biochem 41:1011–1017

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Li W, Liu X, Khan MA, Yamaguchi S (2005) The effect of plant growth regulators, nitric oxide, nitrate, nitrite and light on the germination of dimorphic seeds of Suaeda salsa under saline conditions. J Plant Res 118:207–214

    Article  PubMed  CAS  Google Scholar 

  • Li QY, Niu HB, Yin J, Wang MB, Shao HB, Deng DZ, Chen XX, Ren JP, Li YC (2008) Protective role of exogenous nitric oxide against oxidative-stress induced by salt stress in barley (Hordeum vulgare). Colloid Surf B: Biointerf 65:220–225

    Article  CAS  Google Scholar 

  • Misra N, Dwivedi UN (2004) Genotypic difference in salinity tolerance of green gram cultivars. Plant Sci 166:1135–1142

    Article  CAS  Google Scholar 

  • Mittova V, Guy M, Tal M, Volokita M (2002) Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: increased activities of antioxidant enzymes in root plastids. Free Radical Res 36:195–202

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237–1247

    Article  PubMed  CAS  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signalling in plants. New Phytol 159:11–35

    Article  CAS  Google Scholar 

  • Sarath G, Bethke PC, Jones R, Baird LM, Hou G, Mitchell RB (2006) Nitric oxide accelerates seed germination in warm-season grasses. Planta 223:1154–1164

    Article  PubMed  CAS  Google Scholar 

  • Seckin B, Turkan I, Sekmen AH, Ozfidan C (2010) The role of antioxidant defense systems at differential salt tolerance of Hordeum marinum Huds. (sea barleygrass) and Hordeum vulgare L. (cultivated barley). Environ Exp Bot 69:76–85

    Article  CAS  Google Scholar 

  • Singh J, Sastry EVD, Singh V (2012) Effect of salinity on tomato (Lycopersicon esculentum Mill.) during seed germination stage. Physiol Mol Biol Plants 18:45–50

    Article  PubMed  Google Scholar 

  • Sivritepe HÖ, Sivritepe N, Eriş A, Turhan E (2005) The effects of NaCl pre-treatment on salt tolerance of melons grown under long-term salinity. Sci Hortic 106:568–581

    Article  CAS  Google Scholar 

  • Tanou G, Molassiotis A, Diamantidis G (2009) Induction of reactive oxygen species and necrotic death-like destruction in strawberry leaves by salinity. Environ Exp Bot 65:270–281

    Article  CAS  Google Scholar 

  • Tonón C, Terrile MC, Iglesias MJ, Lamattina L, Casalongué C (2010) Extracellular ATP, nitric oxide and superoxide act coordinately to regulate hypocotyl growth in etiolated Arabidopsis seedlings. J Plant Physiol 167:540–546

    Article  PubMed  Google Scholar 

  • Tseng MJ, Liu CW, Yiu JC (2007) Enhanced tolerance to sulfur dioxide and salt stress of transgenic Chinese cabbage plants expressing both superoxide dismutase and catalase in chloroplasts. Plant Physiol Biochem 45:822–833

    Article  PubMed  CAS  Google Scholar 

  • Tuna LA, Kaya C, Dikilitas M, Higgs D (2008) The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environ Exp Bot 62:1–9

    Article  CAS  Google Scholar 

  • Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163:515–523

    Article  CAS  Google Scholar 

  • Willekens H, Inźe D, Montagu MV, Camp WV (1995) Catalases in plants. Mol Breed 1:207–228

    Article  CAS  Google Scholar 

  • Woodbury W, Spencer AK, Stahmann MA (1971) An improved procedure using ferricyanide for detecting atalase isozymes. Anal Biochem 44:301–305

    Article  PubMed  CAS  Google Scholar 

  • Yin H, Chen Q, Yi M (2008) Effects of short-term heat stress on oxidative damage and responses of antioxidant system in Lilium longiflorum. Plant Growth Regul 54:45–54

    Article  CAS  Google Scholar 

  • Zhang H, Shen WB, Xu LL (2003) Effects of nitric oxide on the germination of wheat seeds and its reactive oxygen species metabolisms under osmotic stress. Acta Bot Sin 45:901–905

    CAS  Google Scholar 

  • Zheng CF, Jiang D, Liu FL, Dai TB, Liu WC, Jing Q, Cao WX (2009) Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity. Environ Exp Bot 67:222–227

    Article  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  PubMed  CAS  Google Scholar 

  • Zushi K, Matsuzoe N (2009) Seasonal and cultivar differences in salt-induced changes in antioxidant system in tomato. Sci Hortic 120:181–187

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 31101539; No. 31201658) and the Zhejiang Provincial Natural Science Foundation of China (No. Y3110308).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Xia Du.

Additional information

Communicated by J. van Staden.

H.-F. Fan and C.-X. Du contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, HF., Du, CX., Ding, L. et al. Effects of nitric oxide on the germination of cucumber seeds and antioxidant enzymes under salinity stress. Acta Physiol Plant 35, 2707–2719 (2013). https://doi.org/10.1007/s11738-013-1303-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-013-1303-0

Keywords

Navigation