Skip to main content
Log in

Cadmium toxicity affects photosynthesis and plant growth at different levels

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

In this article we discuss and update some of the effects of Cd toxicity on the photosynthetic apparatus in a model crop Lactuca sativa. Seeds of L. sativa were germinated in solutions with 0, 1, 10 and 50 μM of Cd(NO3)2 and then transferred to a hydroponic culture medium. After 28 days, the effects of Cd on the photosynthetic apparatus of lettuce were analysed. Exposure of lettuce to 1 μM Cd(NO3)2 affected already plant growth (dry biomass), but, did not induce serious damages in the photosynthetic apparatus. However, increasing concentrations of this metal to 10 and 50 μM promoted a strong reduction of the maximum photochemical efficiency of PSII and an impairment of net CO2 assimilation rate, putatively due to Rubisco activity decrease. This ultimately results in a strong inhibition of plant growth. Nutrient uptake and carbohydrate assimilation were also severely affected by Cd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PN :

Net CO2 assimilation rate

ci/ca:

Ratio of intercellular to atmospheric CO2 concentration

Chl:

Chlorophyll

DW:

Dry weight

E:

Transpiration rate

FW:

Fresh weight

Fv/Fm :

Maximal efficiency of PSII

gs :

Stomatal conductance

Rubisco:

Ribulose 1,5 bisphosphate carboxylase/oxygenase

RWC:

Relative water content

References

  • Ammar WB, Nouairi I, Zarrouk M, Ghorbel MH, Jemal F (2008) Antioxidative response to cadmium in roots and leaves of tomato plants. Biol Plant 52:727–731

    Article  CAS  Google Scholar 

  • Azevedo H, Pinto G, Fernandes J, Loureiro S, Santos C (2005a) Cadmium effects on sunflower: growth and photosynthesis. J Plant Nutr 28:2211–2220

    Article  CAS  Google Scholar 

  • Azevedo H, Pinto G, Santos C (2005b) Cadmium effects in sunflower: membrane permeability and changes in catalase and peroxidase activity in leaves and calluses. J Plant Nutr 28:2233–2241

    Article  CAS  Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Brazilian J Plant Physiol 17:21–34

    CAS  Google Scholar 

  • Bi Y, Chen W, Zhang W, Zhou Q, Yun L, Xing D (2009) Production of reactive oxygen species, impairment of photosynthetic function and dynamic changes in mitochondria are early events in cadmium-induced cell death in Arabidopsis thaliana. Biol Cell 100:629–643

    Article  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Burzynski M, Klobus G (2004) Changes of photosynthetic parameters in cucumber leaves under Cu, Cd, and Pb stress. Photosynth 42:505–510

    Article  CAS  Google Scholar 

  • Chaffei C, Pageau K, Suzuki A, Gouia H, Ghorbel HM, Mascalaux-Daubresse C (2004) Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy. Plant Cell Physiol 45:1681–1693

    Article  PubMed  CAS  Google Scholar 

  • Choudhury NK, Behera RK (2001) Photoinhibition of photosynthesis: role of carotenoids in photoprotection of chloroplasts. Photosynthetica 39:481–488

    Article  CAS  Google Scholar 

  • Correia MJ, Fonseca F, Azedo-Silva J, Dias C, David MM, Barrote I, Osório ML, Osório J (2005) Effects of water deficit on the activity of nitrate reductase and contents of sugars, nitrate and free amino acids in the leaves and roots of sunflower and with lupin plants growing under two nutrient supply regimes. Physiol Plantarum 124:61–70

    Article  CAS  Google Scholar 

  • Costa G, Morel J (1994) Water relations, gas exchange and amino acid content in Cd-treated lettuce. Plant Physiol Biochem 32:561–570

    CAS  Google Scholar 

  • Dias MC, Brüggemann W (2007) Photosynthesis under drought stress in Flaveria species with different degrees of development of the C4 syndrome. Photosynthetica 45:75–84

    Article  Google Scholar 

  • Dias MC, Pinto G, Santos C (2011) Acclimatization of micropropagated plantlets induces an antioxidative burst: a case study with Ulmus minor Mill. Photosynthetica 49:259–266

    Article  Google Scholar 

  • Dias MC, Pinto G, Correia C, Moutinho-Pereira J, Silva S, Santos C (2012) Photosynthetic parameters of Ulmus minor plantlets affected by irradiance during acclimatization. Biol Plant. doi:10.1007/s10535-012-0234-8

    Google Scholar 

  • Dong J, Wu FB, Zhang GP (2006) Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). Chemosphere 64:1659–1666

    Article  PubMed  CAS  Google Scholar 

  • Ekmekçi Y, Tanyolç D, Ayhan B (2008) Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. J Plant Physiol 165:600–611

    Article  PubMed  Google Scholar 

  • Fodor F (2002) Physiological responses of vascular plants to heavy metals. In: Prasad MNV, Strzalka K (eds) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer Academic Publishers, Dordrecht, pp 149–177

    Google Scholar 

  • Gill SS, Khan N, Tuteja N (2012) Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Sci 182:112–120

    Article  PubMed  CAS  Google Scholar 

  • Krapp A, Stitt M (1995) An evaluation of direct and indirect mechanisms for the “sink-regulation” of photosynthesis in spinach: changes in gas exchange, carbohydrates, metabolites, enzyme activities and steady state transcript levels after cold-girdling source leaves. Planta 195:313–323

    Article  CAS  Google Scholar 

  • Krupa Z, Siedlecka A, Kleczkowski L (1999) Cadmium-affected level of inorganic phosphate in rye leaves influences Rubisco subunits. Acta Physiol Plantarum 21:257–261

    Article  CAS  Google Scholar 

  • Kummerová M, Zezulka Š, Králóvá K, Masarovičová E (2010) Effect of zinc and cadmium on physiological and production characteristics in Matricaria recutita. Biol Plant 54:308–314

    Article  Google Scholar 

  • Küpper H, Aravind P, Leitenmaier B, Trtílek M, Šetlík I (2007) Cadmium-induced inhibition of photosynthesis and long-term acclimation to Cd-stress in the Cd hyperaccumulator Thlaspi caerulescens. New Phytol 175:655–674

    Article  PubMed  Google Scholar 

  • Lagriffoul A, Mocquot B, Mench M, Vangronsveld J (1998) Cadmium toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in young maize plants (Zea mays L.). Plant Soil 200:241–250

    Article  CAS  Google Scholar 

  • Lilley RM, Walker DA (1974) An improved spectrophotometric assay for ribulose bisphosphate carboxylase. Bioch Biophysic Acta 358:226–229

    Article  CAS  Google Scholar 

  • López-Climent MF, Arbona V, Pérez-Clemente RM, Gómez-Cadenas A (2011) Effects of cadmium on gas exchange and phytohormone contents in citrus. Biol Plantarum 55:187–190

    Article  Google Scholar 

  • López-Millán A-F, Sagardoy R, Solanas M, Abadía A, Abadía J (2009) Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environ Exp Botany 65:376–385

    Article  Google Scholar 

  • McBride MB (2003) Cadmium concentration limits in agricultural soils: weaknesses in USEPA’s risk assessment and the 503 rule. Hum Ecol Risk Assess 9:661–674

    Article  CAS  Google Scholar 

  • Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 164:601–610

    Article  PubMed  CAS  Google Scholar 

  • Monteiro MS, Santos C, Soares AM, Mann RM (2009) Assessment of biomarkers of cadmium stress in lettuce. Ecotoxicol Environ Saf 72:811–819

    Article  PubMed  CAS  Google Scholar 

  • Monteiro C, Santos C, Pinho S, Oliveira H, Pedrosa T, Dias MC (2012) Cadmium-induced cyto- and genotoxicity are organ-dependent in lettuce. Chem Res Toxicol 25:1423–1434

    Article  PubMed  CAS  Google Scholar 

  • Nelson WO, Campbell PGC (1991) The effects of acidification on the geochemistry of Al, Cd, Pb and Hg in freshwater environments: a literature review. Environ Pollut 71:91–130

    Article  PubMed  CAS  Google Scholar 

  • Pál M, Horváth E, Jand T, Páldi E, Szalai G (2006) Physiological changes and defense mechanisms induced by cadmium stress in maize. J Plant Nutr Soil Sci 169:239–246

    Article  Google Scholar 

  • Papoyan A, Pineros M, Kochian LV (2007) Plant Cd2+ and Zn2+ status effects on root and shoot heavy metal accumulation in Thlaspi caerulescens. New Phytol 175:51–58

    Article  PubMed  CAS  Google Scholar 

  • Pietrini F, Iannelli MA, Pasqualini S, Massacci A (2003) Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. ex Steudel. Plant Physiol 133:829–837

    Article  PubMed  CAS  Google Scholar 

  • Podazza G, Rosa M, González JA, Hilal M, Prado FE (2006) Cadmium induces changes in sucrose partitioning, invertase activities and membrane functionality in roots of Rangpur lime (Citrus limonia L. Osbeck). Plant Biol 8:706–714

    Article  PubMed  CAS  Google Scholar 

  • Rod M, Liu M, Qi H, Zhang ZP, Song ZW, Kou TJ (2012) Response of photosynthesis and chlorophyll fluorescence to drought stress in two maize cultivars. African J Agri Res 34:4751–4760

    Google Scholar 

  • Roh KS, Choi BY (2004) Sucrose regulates growth and activation of rubisco in tobacco leaves in vitro. Biotech Bioprocess Eng 9:229–235

    Article  CAS  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signalling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  PubMed  CAS  Google Scholar 

  • Roth U, Von Roepenack-Lahaye E, Clemens S (2006) Proteome changes in Arabidopsis thaliana roots upon exposure to Cd2+. J Exp Bot 57:4003–4013

    Article  PubMed  CAS  Google Scholar 

  • Sandalio L, Dalurzo H, Gomes M, Romero-Puertas M, del Rio L (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Botany 52:2115–2126

    CAS  Google Scholar 

  • Santos C, Monteiro M, Dias MC (2010) Cadmium toxicity in crops: a review. Environmental science, engineering and technology. Nova Publishers, Novinka

    Google Scholar 

  • Siedlecka A, Krupa Z, Samuelsson G, Öquist G, Gardeström P (1997) Primary carbon metabolism in Phaseolus vulgaris plants under Cd/Fe interaction. Plant Physiol Biochem 35:951–957

    CAS  Google Scholar 

  • Sims DA, Gamon JA (2002) Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ 81:337–354

    Article  Google Scholar 

  • Singh RP, Agrawal M (2007) Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants. Chemosphere 67:2229–2240

    Article  PubMed  CAS  Google Scholar 

  • Vassilev A, Lidon FC, Matos MC, Ramalho JC, Yordanov I (2002) Photosynthetic performance and content of some nutrients in cadmium and copper treated barley plants. J Plant Nut 25:2343–2360

    Article  CAS  Google Scholar 

  • Wang C, Fan X, Wang G, Niu J, Zhou B (2011) Differential expression of rubisco in sporophytes and gametophytes of some marine macroalgae. PLoS One 6:e16351

    Article  PubMed  CAS  Google Scholar 

  • Wójcik M, Tukiendorf A (2005) Cadmium uptake, localization and detoxification in Zea mays. Biol Plant 49:237–245

    Article  Google Scholar 

  • Young AJ (1991) The photoprotective role of carotenoids in higher plants. Physiol Plant 83:702–708

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Portuguese Foundation for Science and technology (FCT) FCT/PTDC/AAC-AMB/112804/2009, BioRem: integration of multiple Biomarkers of toxicity in an assay of phytoremediation in contaminated sites. FCT also supported a post-doctoral fellowship of M. C. Dias (SFRH/BPD/41700/2007) and the doctoral fellowship of C. Monteiro (SFRH/BD/48204/2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Celeste Dias.

Additional information

Communicated by Z. Gombos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dias, M.C., Monteiro, C., Moutinho-Pereira, J. et al. Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol Plant 35, 1281–1289 (2013). https://doi.org/10.1007/s11738-012-1167-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-012-1167-8

Keywords

Navigation