Skip to main content
Log in

Effects of cadmium metal on young gametophytes of Gelidium floridanum: metabolic and morphological changes

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

By evaluating carotenoid content, photosynthetic pigments and changes in cellular morphology, growth rates, and photosynthetic performance, this study aimed to determine the effect of cadmium (Cd) on the development of young gametophytes of Gelidium floridanum. Plants were exposed to 7.5 and 15 μM of Cd for 7 days. Control plants showed increased formation of new filamentous thallus, increased growth rates, presence of starch grains in the cortical and subcortical cells, protein content distributed regularly throughout the cell periphery, and intense autofluorescence of chloroplasts. On the other hand, plants treated with Cd at concentrations of 7.5 and 15 μM showed few formations of new thallus with totally depigmented regions, resulting in decreased growth rates. Plants exposed to 7.5 μM Cd demonstrated alterations in the cell wall and an increase in starch grains in the cortical and subcortical cells, while plants exposed to 15 μM Cd showed changes in medullary cells with no organized distribution of protein content. The autofluorescence and structure of chloroplasts decreased, forming a thin layer on the periphery of cells. Cadmium also affected plant metabolism, as visualized by a decrease in photosynthetic pigments, in particular, phycoerythrin and phycocyanin contents, and an increase in carotenoids. This result agrees with decreased photosynthetic performance and chronic photoinhibition observed after treatment with Cd, as measured by the decrease in electron transport rate. Based on these results, it was concluded that exposure to Cd affects cell metabolism and results in significant toxicity to young gametophytes of G. floridanum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andosch A, Affenzellera MJ, Lutzb C, Lutz-Meindl U (2012) A freshwater green alga under cadmium stress: ameliorating calcium effects on ultrastructure and photosynthesis in the unicellular model Micrasterias. J Plant Physiol 169:1489–1500

    Article  CAS  PubMed  Google Scholar 

  • Andrade LR, Leal RN, Noseda M, Duarte MER, Pereira MS, Mourão PAS et al (2010) Brown algae overproduce cell wall polysaccharides as a protection mechanism against the heavy metal toxicity. Mar Pollut Bull 60(9):1482–1488

    Article  CAS  PubMed  Google Scholar 

  • Aravind P, Prasad MNV (2004) Zinc protects chloroplasts and associated photochemical functions in cadmium exposed Ceratophyllum demersum L., a freshwater macrophyte. Plant Sci 166:1321–1327

    Article  CAS  Google Scholar 

  • Astorga-Espana MS, Calisto-Ulloa NC, Guerrero S (2008) Baseline concentrations of trace metals in macroalgae from the Strait of Magellan, Chile. Bull Environ Contam Toxicol 80(2):97–101

    Article  CAS  PubMed  Google Scholar 

  • Bascik-Remisiewicz A, Tukaj Z (2002) Toxicity of inorganic cadmium salts to the microalgae Scenedesmus armatus (Chlorophyta) with respect to medium composition, pH and CO2 concentration. Acta Physiol Plant 24:59–65

    Article  CAS  Google Scholar 

  • Bascik-Remisiewicz A, Aksmann A, Zak A, Kowalska M, Tukaj Z (2011) Toxicity of Cadmium, Anthracene, and Their Mixture to Desmodesmus subspicatus Estimated by Algal Growth-Inhibition ISO Standard Test. Arch Environ Contam Toxicol 60:610–617

    Article  CAS  PubMed  Google Scholar 

  • Bouzon ZL, Ferreira EC, Santos R, Scherner F, Horta PA, Maraschin M, Schmidt EC (2012) Influences of cadmium on fine structure and metabolism of Hypnea musciformis (Rhodophyta, Gigartinales) cultivated in vitro. Protoplasma 249:637–650

    Article  CAS  PubMed  Google Scholar 

  • Collén J, Pinto E, Pedersén M, Colepicolo P (2003) Induction of oxidative stress in the red macroalgae Gracilaria tenuisitipitata by pollutant metals. Arch Environ Contam Toxicol 45:337–342

    PubMed  Google Scholar 

  • DalCorso G, Farinati S, Maistri S, Furini A (2008) How plants cope with cadmium: staking all on metabolism and gene expression. J Integr Plant Biol 10:1268–1280

    Article  Google Scholar 

  • Daud MK, Sun Y, Dawood M, Hayat Y, Variath MT, Wu YX et al (2009) Cadmium-induced functional and ultrastructural alterations in roots of two transgenic cotton cultivars. J Hazard Mater 161:463–473

    Article  CAS  PubMed  Google Scholar 

  • Daud MK, Ali S, Variath MT, Zhu SJ (2013) Differential physiological, ultramorphological and metabolic responses of cotton cultivars under cadmium stress. Chemosphere 93:2593–2602

    Article  CAS  PubMed  Google Scholar 

  • Engdahl S, Mamboya F, Mtolera M, Semesi A, Bjorg M (1998) The brown macroalgae Padina boergesenii as an indicator of heavy metal contamination in the Zanzibar Chanel. Ambio 27(8):694–700

    Google Scholar 

  • Fernandez-Pinas F, Mateo P, Bonilla I (1991) Binding of cadmium by cyanobacterial growth media: free ion concentration as a toxicity index to the cyanobacterium Nostoc UAM 208. Arch Environ Contam Toxicol 21:425–431

    Article  CAS  PubMed  Google Scholar 

  • Figueroa F, Nygard C, Ekelund N, Gómez I (2003) Photobiological characteristics and photosynthetic UV responses in two Ulva species (Chlorophyta) from southern Spain. J Photochem Photobiol 72:35–44

    Article  CAS  Google Scholar 

  • Gahan PB (1984) Plant histochemistry and cytochemistry: an introduction. Academic Press, London

    Google Scholar 

  • Gill SS, Khan NA, Tuteja N (2012) Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Sci 182:112–120

    Article  CAS  PubMed  Google Scholar 

  • Grymski J, Johnsen G, Sakshaug E (1997) The significance of intracellular selfshading on the biooptical properties of brown, red and green macroalgae. J Phycol 33:408–414

    Article  Google Scholar 

  • Haritonidis S, Malea P (1999) Bioaccumulation of metals by the green alga Ulva rigida from Thermaikos Gulf, Greece. Environ Pollut 104:365–372

    Article  CAS  Google Scholar 

  • Hiscox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57:1332–1334

    Article  CAS  Google Scholar 

  • Jin X, Yang X, Islam E, Liu D, Mahmood Q (2008) Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and nonhyperaccumulator ecotypes of Sedum alfredii Hance. J Hazard Mater 156:387–397

    Article  CAS  PubMed  Google Scholar 

  • Krupa Z, Öquist G, Huner PA (1993) The effects of cadmium on photosynthesis of Phaseolus vulgaris-a fluorescence analysis. Physiol Plant 88:626–630

    Article  CAS  Google Scholar 

  • Kumar M, Kumari P, Gupta V, Anisha PA, Reddy CRK, Jha B (2010) Differential responses to cadmium induced oxidative stress in marine macroalga Ulva lactuca (Ulvales, Chlorophyta). Biometals 23:315–325

    Article  CAS  PubMed  Google Scholar 

  • Kupper H, Kupper F, Spiller M (1996) Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. J Exp Bot 47:259–266

    Article  Google Scholar 

  • Kursar TA, Van Der Meer J, Alberte RS (1983) Light-harvesting system of red algae Gracilaria tikvahiae. II. Phycobilisome Characteristics of Pigment Mutants. Plant Physiol 73:361–369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuthanova A, Opatrny Z, Fischer L (2008) Is internucleosomal DNA fragmentation an indicator of programmed death in plant cells? J Exp Bot 59:2233–2240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li M, Hu C, Zhu Q, Li C, Kong Z, Liu Z (2006) Copper and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in the microalga Pavlova viridis (Prymnesiophyceae). Chemosphere 62:565–572

    Article  CAS  PubMed  Google Scholar 

  • Li M, Yan W, Zhong L, Xu W (2014) Effect of heavy metals (Cu, Pb, and As) on the ultrastructure of Sargassum pallidum in Daya Bay, China. Environ Monit Assess 186:87–95

    Article  Google Scholar 

  • McLachlan J (1973) Growth media-marine. In: Stein JR (ed) Culture methods and growth measurements. Handbook of phycological methods. Cambridge University Press, Cambridge, pp 25–51

  • Malea P, Rijstenbil WJ, Haritonidis S (2006) Effects of cadmium, zinc and nitrogen status on non protein thiols in the macroalgae Enteromorpha spp. from the Scheldt Estuary (SW Netherlands, Belgium) and Thermaikos Gulf (N Aegean Sea, Greece). Mar Environ Res 62:45–60

    Article  CAS  PubMed  Google Scholar 

  • Mamboya FA, Prata PHB, Mtolera M, Bjork M (1999) The effect of copper on the daily growth rate and photosynthetic efficiency of the brown macroalga Padina boergensenii. In: Richmond MD, Francis J (eds) Proceedings of the Conference on Advances on Marine Sciences in Tanzania. pp 185–192

  • Najeeb U, Jilani G, Ali S, Sarwar M, Xu Li Zhou W (2011) Insights into cadmium induced physiological and ultra-structural disorders in Juncus effusus L. and its remediation through exogenous citric acid. J Hazard Mater 186:565–574

    Article  CAS  PubMed  Google Scholar 

  • Noriega GO, Yannarelli GG, Balestrasse KB et al (2007) The effect of nitric oxide on heme oxigenase gene expression in soybean leaves. Planta 226:1155–1163

  • Pekey H (2006) The distribution and sources of heavy metals in Izmit Bay surface sediments affected bay polluted stream. Mar Pollut Bull 52:1197–1208

    Article  CAS  PubMed  Google Scholar 

  • Penniman CA, Mathieson AC, Penniman CE (1986) Reproductive phenology and growth of Gracilaria tikvahiae McLachlan (Gigartinales, Rhodophyta) in the Great Bay Estuary, New Hampshire. Bot Mar 29:147–154

    Article  Google Scholar 

  • Perreault F, Dionne J, Didur O, Juneau P, Popovic R (2011) Effect of cadmium on photosystem II activity in Chlamydomonas reinhardtii: alteration of O–J–I–P fluorescence transients indicating the change of apparent activation energies within photosystem II. Photosynth Res 107:151–157

    Article  CAS  PubMed  Google Scholar 

  • Rocchetta I, Leonardi PI, Amado Filho GM, Molina MDR, Conforti V (2007) Ultrastructure and X-ray microanalysis of Euglena gracilis (Euglenophyta) under chromium stress. Phycologia 46:300–306

    Article  Google Scholar 

  • Santos RW, Schmidt EC, Martins RP, Latini A, Maraschim M, Horta PA, Bouzon ZL (2012) Effects of Cadmium on Growth, Photosynthetic Pigments, Photosynthetic Performance, Biochemical Parameters and Structure of Chloroplasts in the Agarophyte Gracilaria domingensis (Rhodophyta, Gracilariales). Am J Plant Sci 3:1077–1084

    Article  Google Scholar 

  • Santos R, Schmidt EC, Bouzon ZL (2013) Changes in ultrastructure and cytochemistry of the agarophyte Gracilaria domingensis (Rhodophyta, Gracilariales) treated with cadmium. Protoplasma 250:297–305

    Article  CAS  PubMed  Google Scholar 

  • Santos RW, Schmidt EC, Felix MRL, Polo LK, Kreusch M, Pereira DT, Simioni C, Chow F, Ramlov F, Maraschin M, Bouzon ZL (2014) Bioabsorption of cadmium, copper and lead by the red macroalga Gelidium floridanum: physiological responses and ultrastructure features. Ecotoxicol Environ Saf 105:80–89

    Article  PubMed  Google Scholar 

  • Schmidt ÉC, Maraschin M, Bouzon ZL (2010) Effects of UVB radiation on the carragenophyte Kappaphycus alvarezii (Rhodophyta, Gigartinales): changes in ultrastructure, growth, and photosynthetic pigments. Hydrobiologia 649:171–182

    Article  CAS  Google Scholar 

  • Schmidt ÉC, Horta PA, Bouzon ZL, Santos R, Martins RP, Maraschin M, Latini A, Faveri C, Ramlov F (2012) Response of the agarophyte Gelidium floridanum after in vitro exposure to ultraviolet radiation B: changes in ultrastructure, pigments, and antioxidant systems. J Appl Phycol 1:1–15

    Google Scholar 

  • Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis. Ecol Stud 100:49–70

    CAS  Google Scholar 

  • Simioni C, Rover T, Schmidt EC, Felix MRL, Polo LK, Santos R, Costa GB, Kreusch M, Pereira DT, Ouriques C, Bouzon ZL (2014) Effects of brefeldin A on the endomembrane system and germ tube formation of the tetraspore of Gelidium floridanum (Rhodophyta, Florideophyceae). J Phycol 50(3):577–596

    Article  CAS  Google Scholar 

  • Sousa-Pinto I, Murano E, Coelho S, Felga A, Pereira R (1999) The effect of light on growth and agar content of Gelidium pulchellum (Gelidiaceae, Rhodophyta) in cultura. Hydrobiologia 398/399:329–338

    Article  CAS  Google Scholar 

  • Talarico L (2002) Fine structure and X-ray microanalysis of a red macrophyte cultured under cadmium stress. Environ Pollut 120:813–821

    Article  CAS  PubMed  Google Scholar 

  • Templeton DM, Liu Y (2010) Multiple roles of cadmium in cell death and survival. Chem Biol Interact 188:267–275

    Article  CAS  PubMed  Google Scholar 

  • Thapar R, Srivastava AK, Bhargava P, Mishra Y, Rai LC (2008) Impact of different abiotic stresses on growth, photosynthetic electron transport chain, nutrient uptake and enzyme activities of Cu-acclimated Anabaena doliolum. J Plant Physiol 165:306–316

    Article  CAS  PubMed  Google Scholar 

  • Tripathi BN, Gaur JP (2006) Physiological behavior of Scenedesmus sp. during exposure to elevated levels of Cu and Zn and after withdrawal of metal stress. Protoplasma 229:1–9

    Article  CAS  PubMed  Google Scholar 

  • Tripathi BN, Mehta SK, Gaur JP (2004) Recovery of uptake and assimilation of nitrate in Scenedesmus sp. previously exposed to elevated levels of Cu2+ and Zn2+. J Plant Physiol 161:543–549

    Article  CAS  PubMed  Google Scholar 

  • Vecchia FD, La Rocca N, Moro I, De Faveri S, Andreoli C, Rascio N (2005) Morphogenetic, ultrastructural and physiological damages suffered by submerged leaves of Elodea canadensis exposed to cadmium. Plant Sci 168:329–338

    Article  Google Scholar 

  • Vecchia FD, Marzocchi M, Maistro S, Moro I (2012) Morpho-physiological effects of cadmium on two Ulva species. Algol Stud 138:13–25

    Article  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12:364–372

    Article  CAS  PubMed  Google Scholar 

  • Villares R, Puente X, Carballeira A (2002) Seasonal variation and background levels of heavy metals in two green seaweeds. Environ Pollut 119(1):79–90

    Article  CAS  Google Scholar 

  • Visvik I, Rachlin JW (1992) Ultraestructural Changes in Dunaliella minuta Following Acute and Chronic Exposure to Copper and Cadmium. Arch Environ Contam Toxicol 23:420–425

    Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

  • Wu TM, Lee TM (2008) Regulation of activity and gene expression of antioxidant enzymes in Ulva fasciata Delile (Ulvales, Chlorophyta) in response to excess copper. Phycologia 47(4):346–360

    Article  CAS  Google Scholar 

  • Xia JR, Li YJ, Lu J, Chen B (2004) Effects of copper and cadmium on growth, photosynthesis, and pigment content in Gracilaria lemaneiformis. Bull Environ Contam Toxicol 73:979–986

    Article  CAS  PubMed  Google Scholar 

  • Ying RR, Qiu RL, Tang YT, Hu PJ, Qiu H, Chen HR et al (2010) Cadmium tolerance of carbon assimilation enzymes and chloroplast in Zn/Cd hyperaccumulator Picris divaricata. J Plant Physiol 167:81–87

    Article  CAS  PubMed  Google Scholar 

  • Zitta CS, Oliveira EM, Bouzon ZL, Hayashi L (2012) Ploidy determination of three Kappaphycus alvarezii strains (Rhodophyta, Gigartinales) by confocal fluorescence microscopy. J Appl Phycol 24:495–499

    Article  Google Scholar 

  • Zitta CS, Rover T, Hayashi L, Bouzon ZL (2013) Callus ontogeny of the Kappaphycus alvarezii (Rhodophyta, Gigartinales) brown tetrasporophyte strain. J Appl Phycol 25:615–629

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the staff of the Central Laboratory of Electron Microscopy (LCME), Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil, for the use of their transmission electron microscope. This study was supported in part by the Coordenacão de Aperfeicoamento de Pessoal de Nível Superior (CAPES, Brazil) and Fundacão de Apoio à Pesquisa Cientifica e Tecnológica do Estado de Santa Catarina (FAPESC). The authors are grateful to CAPES for providing a scholarship to Carmen Simioni. This study is part of the Ph.D. thesis of the first author.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Simioni.

Additional information

Handling Editor: Bhumi Nath Tripathi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simioni, C., Schmidt, É.C., Rover, T. et al. Effects of cadmium metal on young gametophytes of Gelidium floridanum: metabolic and morphological changes. Protoplasma 252, 1347–1359 (2015). https://doi.org/10.1007/s00709-015-0768-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-015-0768-7

Keywords

Navigation