Skip to main content
Log in

Food Intake and Body Weight Responses to Intermittent vs. Continuous Gastric Electrical Stimulation in Diet-Induced Obese Rats

  • Animal Research
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

Gastric electrical stimulation (GES) has recently been introduced as a potential therapy for the treatment of obesity. The main challenge for the new generation of devices is to achieve desired clinical outcomes at a suitably low level of energy consumption. The aim of this study is to compare the effectiveness of GES with continuous and intermittent duty cycles in reducing food intake and body weight in diet-induced obesity-prone rats.

Methods

In macro duty cycle experiment, 40 rats were divided into groups to receive a sham GES, continuous GES, or intermittent GES (15 min On–45 min Off or 15 min On–15 min Off) for 28 days. In micro duty cycle experiment, 18 rats received cross-over treatment of continuous stimulation, 60 % time cycle or 40 % time cycle. Food intake, body weight, gastric emptying and ghrelin level were measured to evaluate the effect of different GES.

Results

GES with macro duty cycle intensity-dependently reduced mean daily food intake increase by 18.6, 10.2 and -6.0 % compared to 42.7 % with sham GES and body weight gain by 6.1 %, 3.4 and -0.8 % compared to 5 % with sham GES. Daily food intake decreased with increasing micro duty cycle intensity, averaging 16.5, 15.6 and 13.7 g/day under 40 % cycle, 60 % cycle and continuous stimulation respectively. Gastric emptying was intensity-dependently delayed by GES. GES has no effect in modulating plasma ghrelin level.

Conclusions

GES energy-dependently reduces food intake, body weight and gastric emptying. Peripheral modulation of plasma ghrelin level is not related to the GES effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Park MI, Camilleri M. Gastric motor and sensory functions in obesity. Obes Res. 2005;13:491–500.

    Article  PubMed  Google Scholar 

  2. Bray GA, Greenway FL. Current and potential drugs for treatment of obesity. Endocr Rev. 1999;20:805–75.

    Article  PubMed  CAS  Google Scholar 

  3. Basdevant A, Laville M, Ziegler O. Recommendations for the diagnosis, the prevention and the treatment of obesity. Diabetes Metab. 2002;28:146–50.

    PubMed  CAS  Google Scholar 

  4. Bray GA, Ryan DH. Drug treatment of the overweight patient. Gastroenterology. 2007;132:2239–52.

    Article  PubMed  CAS  Google Scholar 

  5. Crookes PF. Surgical treatment of morbid obesity. Annu Rev Med. 2006;57:243–64.

    Article  PubMed  CAS  Google Scholar 

  6. Sagar PM. Surgical treatment of morbid obesity. Br J Surg. 1995;82:732–9.

    Article  PubMed  CAS  Google Scholar 

  7. Cigaina V. Gastric pacing as therapy for morbid obesity: preliminary results. Obes Surg. 2002;12 Suppl 1:12S–6S.

    Article  PubMed  Google Scholar 

  8. Cigaina VV, Saggioro A, Rigo VV, Pinato G, Ischai S. Long-term effects of gastric pacing to reduce feed intake in swine. Obes Surg. 1996;6:250–3.

    Article  PubMed  Google Scholar 

  9. Favretti F, De Luca M, Segato G, et al. Treatment of morbid obesity with the Transcend Implantable Gastric Stimulator (IGS): a prospective survey. Obes Surg. 2004;14:666–70.

    Article  PubMed  Google Scholar 

  10. Shikora SA. Implantable gastric stimulation for the treatment of severe obesity. Obes Surg. 2004;14:545–8.

    Article  PubMed  Google Scholar 

  11. Shikora SA, Bergenstal R, Bessler M, et al. Implantable gastric stimulation for the treatment of clinically severe obesity: results of the SHAPE trial. Surg Obes Relat Dis. 2009;5:31–7.

    Article  PubMed  Google Scholar 

  12. Shikora SA. "What are the Yanks doing?" the U.S. experience with implantable gastric stimulation (IGS) for the treatment of obesity—update on the ongoing clinical trials. Obes Surg. 2004;14 Suppl 1:S40–8.

    Article  PubMed  Google Scholar 

  13. Greenstein RJ, Belachew M. Implantable gastric stimulation (IGS) as therapy for human morbid obesity: report from the 2001 IFSO symposium in Crete. Obes Surg. 2002;12 Suppl 1:3S–5S.

    Article  PubMed  Google Scholar 

  14. Ouyang H, Xing J, Chen JD. Tachygastria induced by gastric electrical stimulation is mediated via alpha- and beta-adrenergic pathway and inhibits antral motility in dogs. Neurogastroenterol Motil. 2005;17:846–53.

    Article  PubMed  CAS  Google Scholar 

  15. Yin J, Chen JD. Retrograde gastric electrical stimulation reduces food intake and weight in obese rats. Obes Res. 2005;13:1580–7.

    Article  PubMed  Google Scholar 

  16. Zhang J, Tang M, Chen JD. Gastric electrical stimulation for obesity: the need for a new device using wider pulses. Obesity (Silver Spring). 2009;17:474–80.

    Article  CAS  Google Scholar 

  17. Du P, Li S, O'Grady G, Cheng LK, Pullan AJ, Chen JD. Effects of electrical stimulation on isolated rodent gastric smooth muscle cells evaluated via a joint computational simulation and experimental approach. Am J Physiol Gastrointest Liver Physiol. 2009;297:G672–80.

    Article  PubMed  CAS  Google Scholar 

  18. Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes. 2001;50:1714–9.

    Article  PubMed  CAS  Google Scholar 

  19. Liu S, Tang M, Tao S, Chen JD. Central expressions of ghrelin and cholecystokinin in rats with gastric electrical stimulation. Obes Surg. 2008;18:109–14.

    Article  PubMed  Google Scholar 

  20. Xu J, McNearney TA, Chen JD. Gastric/intestinal electrical stimulation modulates appetite regulatory peptide hormones in the stomach and duodenum in rats. Obes Surg. 2007;17:406–13.

    Article  PubMed  Google Scholar 

  21. Tosetti C, Corinaldesi R, Stanghellini V, et al. Gastric emptying of solids in morbid obesity. Int J Obes Relat Metab Disord. 1996;20:200–5.

    PubMed  CAS  Google Scholar 

  22. Wright RA, Krinsky S, Fleeman C, Trujillo J, Teague E. Gastric emptying and obesity. Gastroenterology. 1983;84:747–51.

    PubMed  CAS  Google Scholar 

  23. Zahorska-Markiewicz B, Jonderko K, Lelek A, Skrzypek D. Gastric emptying in obesity. Hum Nutr Clin Nutr. 1986;40:309–13.

    PubMed  CAS  Google Scholar 

  24. Dourmashkin JT, Chang GQ, Hill JO, Gayles EC, Fried SK, Leibowitz SF. Model for predicting and phenotyping at normal weight the long-term propensity for obesity in Sprague–Dawley rats. Physiol Behav. 2006;87:666–78.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang J, Maude-Griffin R, Zhu H, et al. Gastric electrical stimulation parameter dependently alters ventral medial hypothalamic activity and feeding in obese rats. Am J Physiol Gastrointest Liver Physiol. 2011;301:G912–8.

    Article  PubMed  CAS  Google Scholar 

  26. Iwa M, Nakade Y, Pappas TN, Takahashi T. Electroacupuncture elicits dual effects: stimulation of delayed gastric emptying and inhibition of accelerated colonic transit induced by restraint stress in rats. Dig Dis Sci. 2006;51:1493–500.

    Article  PubMed  Google Scholar 

  27. Duggan JP, Booth DA. Obesity, overeating, and rapid gastric emptying in rats with ventromedial hypothalamic lesions. Science. 1986;231:609–11.

    Article  PubMed  CAS  Google Scholar 

  28. Sarnelli G, Caenepeel P, Geypens B, Janssens J, Tack J. Symptoms associated with impaired gastric emptying of solids and liquids in functional dyspepsia. Am J Gastroenterol. 2003;98:783–8.

    Article  PubMed  Google Scholar 

  29. Barkin JS, Reiner DK, Goldberg RI, Phillips RS, Janowitz WR. The effects of morbid obesity and the Garren–Edwards gastric bubble on solid phase gastric emptying. Am J Gastroenterol. 1988;83:1364–7.

    PubMed  CAS  Google Scholar 

  30. Horowitz M, Collins PJ, Shearman DJ. Effect of increasing the caloric/osmotic content of the liquid component of a mixed solid and liquid meal on gastric emptying in obese subjects. Hum Nutr Clin Nutr. 1986;40:51–6.

    PubMed  CAS  Google Scholar 

  31. Sanmiguel CP, Haddad W, Aviv R, et al. The TANTALUS system for obesity: effect on gastric emptying of solids and ghrelin plasma levels. Obes Surg. 2007;17:1503–9.

    Article  PubMed  Google Scholar 

  32. Zhang J, Xu X, Chen JD. Chronic tachygastrial electrical stimulation reduces food intake in dogs. Obesity (Silver Spring). 2007;15:330–9.

    Article  Google Scholar 

  33. Zhu H, Sallam H, Chen DD, Chen JD. Therapeutic potential of synchronized gastric electrical stimulation for gastroparesis: enhanced gastric motility in dogs. Am J Physiol Regul Integr Comp Physiol. 2007;293:R1875–81.

    Article  PubMed  CAS  Google Scholar 

  34. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402:656–60.

    Article  PubMed  CAS  Google Scholar 

  35. Inui A, Asakawa A, Bowers CY, et al. Ghrelin, appetite, and gastric motility: the emerging role of the stomach as an endocrine organ. FASEB J. 2004;18:439–56.

    Article  PubMed  CAS  Google Scholar 

  36. Ejskjaer N, Vestergaard ET, Hellstrom PM, et al. Ghrelin receptor agonist (TZP-101) accelerates gastric emptying in adults with diabetes and symptomatic gastroparesis. Aliment Pharmacol Ther. 2009;29:1179–87.

    Article  PubMed  CAS  Google Scholar 

  37. Murray CD, Martin NM, Patterson M, et al. Ghrelin enhances gastric emptying in diabetic gastroparesis: a double blind, placebo controlled, crossover study. Gut. 2005;54:1693–8.

    Article  PubMed  CAS  Google Scholar 

  38. Asakawa A, Inui A, Kaga T, et al. Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilin. Gastroenterology. 2001;120:337–45.

    Article  PubMed  CAS  Google Scholar 

  39. Abell T, McCallum R, Hocking M, et al. Gastric electrical stimulation for medically refractory gastroparesis. Gastroenterology. 2003;125:421–8.

    Article  PubMed  Google Scholar 

  40. Gallas S, Sinno MH, Boukhettala N, et al. Gastric electrical stimulation increases ghrelin production and inhibits catecholaminergic brainstem neurons in rats. Eur J Neurosci. 2011;33:276–84.

    Article  PubMed  Google Scholar 

  41. Zhang J, Liu S, Tang M, Chen JD. Optimal locations and parameters of gastric electrical stimulation in altering ghrelin and oxytocin in the hypothalamus of rats. Neurosci Res. 2008;62:262–9.

    Article  PubMed  CAS  Google Scholar 

  42. Tang M, Zhang J, Chen JD. Central mechanisms of gastric electrical stimulation involving neurons in the paraventricular nucleus of the hypothalamus in rats. Obes Surg. 2006;16:344–52.

    Article  PubMed  Google Scholar 

Download references

Disclosures

This study was funded by Medtronic to J Chen. Medtronic employees (R. Maude-Griffin, and W. Starkebaum) participated in the study design, analysis, and manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiande D. Z. Chen.

Additional information

Shiying Li and Roland Maude-Griffin contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Maude-Griffin, R., Sun, Y. et al. Food Intake and Body Weight Responses to Intermittent vs. Continuous Gastric Electrical Stimulation in Diet-Induced Obese Rats. OBES SURG 23, 71–79 (2013). https://doi.org/10.1007/s11695-012-0773-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-012-0773-2

Keywords

Navigation