Skip to main content

Advertisement

Log in

Double inversion recovery imaging improves the evaluation of gray matter volume losses in patients with Alzheimer’s disease and mild cognitive impairment

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Our goal was to investigate whether three-dimensional (3D) double inversion recovery (DIR) images can show alterations of gray matter volume (GMV) between Alzheimer’s disease (AD) patients and nondemented controls and to compare alterations of GMV between groups using DIR images and those using 3D T1-weighted (T1W) images. We included 25 subjects with mild or probable AD, 25 subjects with amnestic mild cognitive impairment (MCI), and 25 elderly cognitively normal (CN) subjects. Group differences in GMV among CN, MCI, and AD patients were tested by voxel-wise, one-way ANOVA. Additional region-of-interest-based comparisons of GMV differences among the three groups for DIR and T1WI were performed using ANCOVA. Finally, ROC curve analysis was performed. In the AD group compared with the CN and MCI groups, GMV was decreased in both DIR and T1W images. However, the areas showing GMV loss were larger in DIR images compared to those in T1W images. Amygdala had the highest area under curve value for both DIR and T1W images. DIR images were sensitive for identifying GMV loss in patients with AD compared with MCI and CN subjects and areas showing GMV loss identified with DIR were extended to more brain areas than those identified with T1W. With DIR, amygdala GMV is the most sensitive in differentiating between subject groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahn, H. J., Chin, J., Park, A., Lee, B. H., Suh, M. K., Seo, S. W., et al. (2010). Seoul neuropsychological screening battery-dementia version (SNSB-D): a useful tool for assessing and monitoring cognitive impairments in dementia patients. Journal of Korean Medical Science, 25(7), 1071–1076. doi:10.3346/jkms.2010.25.7.1071.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95–113. doi:10.1016/j.neuroimage.2007.07.007.

    Article  PubMed  Google Scholar 

  • Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry–the methods. NeuroImage, 11(6 Pt 1), 805–821. doi:10.1006/nimg.2000.0582.

    Article  CAS  PubMed  Google Scholar 

  • Baron, J. C., Chetelat, G., Desgranges, B., Perchey, G., Landeau, B., de la Sayette, V., et al. (2001). In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer’s disease. NeuroImage, 14(2), 298–309. doi:10.1006/nimg.2001.0848.

    Article  CAS  PubMed  Google Scholar 

  • Boulby, P. A., Symms, M. R., & Barker, G. J. (2004). Optimized interleaved whole-brain 3D double inversion recovery (DIR) sequence for imaging the neocortex. Magnetic Resonance in Medicine, 51(6), 1181–1186. doi:10.1002/mrm.20088.

    Article  CAS  PubMed  Google Scholar 

  • Bozzali, M., Filippi, M., Magnani, G., Cercignani, M., Franceschi, M., Schiatti, E., et al. (2006). The contribution of voxel-based morphometry in staging patients with mild cognitive impairment. Neurology, 67(3), 453–460. doi:10.1212/01.wnl.0000228243.56665.c2.

    Article  CAS  PubMed  Google Scholar 

  • Calabrese, M., De Stefano, N., Atzori, M., Bernardi, V., Mattisi, I., Barachino, L., et al. (2007). Detection of cortical inflammatory lesions by double inversion recovery magnetic resonance imaging in patients with multiple sclerosis. Archives of Neurology, 64(10), 1416–1422. doi:10.1001/archneur.64.10.1416.

    Article  PubMed  Google Scholar 

  • Dai, W., Lopez, O. L., Carmichael, O. T., Becker, J. T., Kuller, L. H., & Gach, H. M. (2009). Mild cognitive impairment and Alzheimer disease: patterns of altered cerebral blood flow at MR imaging. Radiology, 250(3), 856–866. doi:10.1148/radiol.2503080751.

    Article  PubMed  PubMed Central  Google Scholar 

  • Diaz-de-Grenu, L. Z., Acosta-Cabronero, J., Pereira, J. M., Pengas, G., Williams, G. B., & Nestor, P. J. (2011). MRI detection of tissue pathology beyond atrophy in Alzheimer’s disease: introducing T2-VBM. NeuroImage, 56(4), 1946–1953. doi:10.1016/j.neuroimage.2011.03.082.

    Article  PubMed  Google Scholar 

  • Eggert, L. D., Sommer, J., Jansen, A., Kircher, T., & Konrad, C. (2012). Accuracy and reliability of automated gray matter segmentation pathways on real and simulated structural magnetic resonance images of the human brain. PloS One, 7(9), e45081. doi:10.1371/journal.pone.0045081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Good, C. D., Scahill, R. I., Fox, N. C., Ashburner, J., Friston, K. J., Chan, D., et al. (2002). Automatic differentiation of anatomical patterns in the human brain: validation with studies of degenerative dementias. NeuroImage, 17(1), 29–46. doi:10.1006/nimg.2002.1202.

    Article  PubMed  Google Scholar 

  • Guo, X., Wang, Z., Li, K., Li, Z., Qi, Z., Jin, Z., et al. (2010). Voxel-based assessment of gray and white matter volumes in Alzheimer’s disease. Neuroscience Letters, 468(2), 146–150. doi:10.1016/j.neulet.2009.10.086.

    Article  CAS  PubMed  Google Scholar 

  • Harris, R. J., Cloughesy, T. F., Pope, W. B., Godinez, S., Natsuaki, Y., Nghiemphu, P. L., et al. (2013). Pre- and post-contrast three-dimensional double inversion-recovery MRI in human glioblastoma. Journal of Neuro-Oncology, 112(2), 257–266. doi:10.1007/s11060-013-1057-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horinek, D., Varjassyova, A., & Hort, J. (2007). Magnetic resonance analysis of amygdalar volume in Alzheimer’s disease. Current Opinion in Psychiatry, 20(3), 273–277. doi:10.1097/YCO.0b013e3280ebb613.

    Article  PubMed  Google Scholar 

  • Li, Q., Zhang, Q., Sun, H., Zhang, Y., & Bai, R. (2011). Double inversion recovery magnetic resonance imaging at 3 T: diagnostic value in hippocampal sclerosis. Journal of Computer Assisted Tomography, 35(2), 290–293. doi:10.1097/RCT.0b013e3182073c56.

    Article  PubMed  Google Scholar 

  • McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology, 34(7), 939–944.

    Article  CAS  PubMed  Google Scholar 

  • Meara, S. J., & Barker, G. J. (2005). Evolution of the longitudinal magnetization for pulse sequences using a fast spin-echo readout: application to fluid-attenuated inversion-recovery and double inversion-recovery sequences. Magnetic Resonance in Medicine, 54(1), 241–245. doi:10.1002/mrm.20541.

    Article  PubMed  Google Scholar 

  • Morimoto, E., Kanagaki, M., Okada, T., Yamamoto, A., Mori, N., Matsumoto, R., et al. (2013a). Anterior temporal lobe white matter abnormal signal (ATLAS) as an indicator of seizure focus laterality in temporal lobe epilepsy: comparison of double inversion recovery, FLAIR and T2W MR imaging. European Radiology, 23(1), 3–11. doi:10.1007/s00330-012-2565-4.

    Article  PubMed  Google Scholar 

  • Morimoto, E., Okada, T., Kanagaki, M., Yamamoto, A., Fushimi, Y., Matsumoto, R., et al. (2013b). Evaluation of focus laterality in temporal lobe epilepsy: a quantitative study comparing double inversion-recovery MR imaging at 3 T with FDG-PET. Epilepsia. doi:10.1111/epi.12396.

    PubMed  Google Scholar 

  • Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., & Kokmen, E. (1999). Mild cognitive impairment: clinical characterization and outcome. Archives of Neurology, 56(3), 303–308.

    Article  CAS  PubMed  Google Scholar 

  • Petersen, R. C., Doody, R., Kurz, A., Mohs, R. C., Morris, J. C., Rabins, P. V., et al. (2001). Current concepts in mild cognitive impairment. Archives of Neurology, 58(12), 1985–1992. doi:10.1001/archneur.58.12.1985.

  • Pouwels, P. J., Kuijer, J. P., Mugler 3rd, J. P., Guttmann, C. R., & Barkhof, F. (2006). Human gray matter: feasibility of single-slab 3D double inversion-recovery high-spatial-resolution MR imaging. Radiology, 241(3), 873–879. doi:10.1148/radiol.2413051182.

    Article  PubMed  Google Scholar 

  • Redpath, T. W., & Smith, F. W. (1994). Technical note: use of a double inversion recovery pulse sequence to image selectively grey or white brain matter. The British Journal of Radiology, 67(804), 1258–1263.

    Article  CAS  PubMed  Google Scholar 

  • Rugg-Gunn, F. J., Boulby, P. A., Symms, M. R., Barker, G. J., & Duncan, J. S. (2006). Imaging the neocortex in epilepsy with double inversion recovery imaging. NeuroImage, 31(1), 39–50. doi:10.1016/j.neuroimage.2005.11.034.

    Article  PubMed  Google Scholar 

  • Sepulcre, J., Sabuncu, M. R., Becker, A., Sperling, R., & Johnson, K. A. (2013). In vivo characterization of the early states of the amyloid-beta network. Brain, 136(Pt 7), 2239–2252. doi:10.1093/brain/awt146.

    Article  PubMed  PubMed Central  Google Scholar 

  • Small, G. W., Bookheimer, S. Y., Thompson, P. M., Cole, G. M., Huang, S. C., Kepe, V., et al. (2008). Current and future uses of neuroimaging for cognitively impaired patients. Lancet Neurology, 7(2), 161–172. doi:10.1016/S1474-4422(08)70019-X.

    Article  PubMed  PubMed Central  Google Scholar 

  • Turetschek, K., Wunderbaldinger, P., Bankier, A. A., Zontsich, T., Graf, O., Mallek, R., et al. (1998). Double inversion recovery imaging of the brain: initial experience and comparison with fluid attenuated inversion recovery imaging. Magnetic Resonance Imaging, 16(2), 127–135. doi:10.1016/S0730-725X(97)00254-3.

    Article  CAS  PubMed  Google Scholar 

  • Vural, G., Keklikoglu, H. D., Temel, S., Deniz, O., & Ercan, K. (2013). Comparison of double inversion recovery and conventional magnetic resonance brain imaging in patients with multiple sclerosis and relations with disease disability. The Neuroradiology Journal, 26(2), 133–142. doi:10.1177/197140091302600201.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geon-Ho Jahng.

Ethics declarations

Source of Funding

This study was supported by a grant of the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (HI1C1238/A111282).

Conflicts of Interest

All authors declare that we have no conflict of interest.

Informed consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all patients for being included in the study.

Additional information

This manuscript is in accordance with the statement of ethical standards for manuscripts. English was edited by a native English speaker from the Harrisco company (http://www.harrisco.net/).

Electronic supplementary material

Supplemental table (DOCX 35 kb)

11682_2015_9469_MOESM2_ESM.docx

Supplement Figure. Result of gray matter volume (GMV) differences among the three subject groups of T1-weighted (T1W) images with resampling 2 mm and 4 mm slice thicknesses. AD, Alzheimer’s disease. MCI, mild cognitive impairment. CN, cognitively normal. GMV in AD with 2 mm and 4 mm slice thickness was almost the same result as that with 1 mm slice thickness. When we increased the slice thickness of T1W image, we did not find additional areas that showed significant GMV loss in AD. (DOCX 4771 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahng, GH., Lee, D.K., Lee, JM. et al. Double inversion recovery imaging improves the evaluation of gray matter volume losses in patients with Alzheimer’s disease and mild cognitive impairment. Brain Imaging and Behavior 10, 1015–1028 (2016). https://doi.org/10.1007/s11682-015-9469-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-015-9469-2

Keywords

Navigation