Skip to main content

Advertisement

Log in

Sustained cortical and subcortical neuromodulation induced by electrical tongue stimulation

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

This pilot study aimed to show that information-free stimulation of the tongue can improve behavioral measures and induce sustained neuromodulation of the balance-processing network in individuals with balance dysfunction. Twelve balance-impaired subjects received one week of cranial nerve non-invasive neuromodulation (CN-NINM). Before and after the week of stimulation, postural sway and fMRI activation were measured to monitor susceptibility to optic flow. Nine normal controls also underwent the postural sway and fMRI tests but did not receive CN-NINM. Results showed that before CN-NINM balance-impaired subjects swayed more than normal controls as expected (p ≤ 0.05), and that overall sway and susceptibility to optic flow decreased after CN-NINM (p ≤ 0.005 & p ≤ 0.05). fMRI showed upregulation of visual sensitivity to optic flow in balance-impaired subjects that decreased after CN-NINM. A region of interest analysis indicated that CN-NINM may induce neuromodulation by increasing activity within the dorsal pons (p ≤ 0.01).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anker, A. R., Ali, A., Arendt, H. E., Cass, S. P., Cotter, L. A., Jian, B. J., et al. (2003). Use of electrical vestibular stimulation to alter genioglossal muscle activity in awake cats. Journal of Vestibular Research, 13, 1–8.

    Google Scholar 

  • Bach-y-Rita, P., Collins, C. C., Saunders, F. A., White, B., & Scadden, L. (1969). Vision substitution by tactile image projection. Nature, 221, 963–964.

    Article  CAS  PubMed  Google Scholar 

  • Bach-y-Rita, P., Kaczmarek, K. A., Tyler, M. E., & Garcia-Lara, J. (1998). Form perception with a 49-point electrotactile stimulus array on the tongue: a technical note. Journal of Rehabilitation Research and Development, 35, 427–430.

    CAS  PubMed  Google Scholar 

  • Bach-y-Rita, P., & Kercel, S. W. (2003). Sensory substitution and the human–machine interface. Trends in Cognitive Sciences, 7, 541–546.

    Article  PubMed  Google Scholar 

  • Bense, S., Janusch, B., Vucurevic, G., Bauermann, T., Schlindwein, P., Brandt, T., et al. (2006). Brainstem and cerebellar fMRI-activation during horizontal and vertical optokinetic stimulation. Experimental Brain Research, 174, 312–323.

    Article  Google Scholar 

  • Boggio, P. S., Nunes, A., Rigonatti, S. P., Nitsche, M. A., Pascual-Leone, A., & Fregni, F. (2007). Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restorative Neurology and Neuroscience, 25, 123–129.

    PubMed  Google Scholar 

  • Bolognini, N., Pascual-Leone, A., & Fregni, F. (2009). Using non-invasive brain stimulation to augment motor training-induced plasticity. Journal of Neuroengineering and Rehabilitation, 6, 6–8.

    Article  Google Scholar 

  • Borel, L., Lopez, C., Péruch, P., & Lacour, M. (2008). Vestibular syndrome: a change in internal spatial representation. Neurophysiologie Clinique/Clinical Neurophysiology, 38, 375–389.

    Article  CAS  Google Scholar 

  • Buisseret-Delmas, C., Compoint, C., Delfini, C., & Buisseret, P. (1999). Organisation of reciprocal connections between trigeminal and vestibular nuclei in the rat. Journal of Comparative Neurology, 409, 153–168.

    Google Scholar 

  • Canals, S., Beyerlein, M., Merkle, H., & Logothetis, N. K. (2009). Functional MRI evidence for LTP-induced neural network reorganization. Current Biology, 19, 398–403.

    Article  CAS  PubMed  Google Scholar 

  • Cardin, V., & Smith, A. T. (2010). Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation. Cerebral Cortex, doi:10.1093/cercor/bhp268.

  • Celnik, P., Hummel, F., Harris-Love, M., Wolk, R., & Cohen, L. G. (2007). Somatosensory stimulation enhances the effects of training functional hand tasks in patients with chronic stroke. Archives of Physical Medicine and Rehabilitation, 88, 1369–1376.

    Article  PubMed  Google Scholar 

  • Cesarani, A., Alpini, D., Monti, B., & Raponi, G. (2004). The treatment of acute vertigo. Neurological Sciences, 25, 26–30.

    Article  Google Scholar 

  • Charrier, C., Coronas, V., Fombonne, J., Roger, M., Jean, A., Krantic, S., et al. (2006). Characterization of neural stem cells in the dorsal vagal complex of adult rat by in vivo proliferation labeling and in vitro neurosphere assay. Neuroscience, 138, 5–16.

    Article  CAS  PubMed  Google Scholar 

  • Chebat, D. R., Rainville, C., Kupers, R., & Ptito, M. (2007). Tactile-'visual'acuity of the tongue in early blind individuals. Neuroreport, 18, 1901–1904.

    Article  PubMed  Google Scholar 

  • Collignon, O., Voss, P., Lassonde, M., & Lepore, F. (2009). Cross-modal plasticity for the spatial processing of sounds in visually deprived subjects. Experimental Brain Research, 192, 343–358.

    Article  Google Scholar 

  • Cox, R. W. (1996). AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29, 162–173.

    Article  CAS  PubMed  Google Scholar 

  • Danilov, Y. P., Tyler, M. E., Skinner, K. L., & Bach-y-Rita, P. (2006). Efficacy of electrotactile vestibular substitution in patients with bilateral vestibular and central balance loss. Conference Proceedings—IEEE Engineering in Medicine and Biology Society, Suppl, 6605–6609.

  • Danilov, Y., Tyler, M., Skinner, K., Hogle, R., & Bach-y-Rita, P. (2007). Efficacy of electrotactile vestibular substitution in patients with peripheral and central vestibular loss. Journal of Vestibular Research, 17, 119–130.

    CAS  PubMed  Google Scholar 

  • Deutschlander, A., Bense, S., Stephan, T., Schwaiger, M., Dieterich, M., & Brandt, T. (2004). Rollvection versus linearvection: comparison of brain activations in PET. Human Brain Mapping, 21, 143–153.

    Article  PubMed  Google Scholar 

  • Diedrichsen, J. (2006). A spatially unbiased atlas template of the human cerebellum. Neuroimage, 33, 127–138.

    Article  PubMed  Google Scholar 

  • Diedrichsen, J., Balsters, J. H., Flavell, J., Cussans, E., & Ramnani, N. (2009). A probabilistic MR atlas of the human cerebellum. Neuroimage, 46, 39–46.

    Article  PubMed  Google Scholar 

  • Dieterich, M. (2007). Central vestibular disorders. Journal of Neurology, 254, 559–568.

    Article  PubMed  Google Scholar 

  • Dieterich, M., & Brandt, T. (2000). Brain activation studies on visual-vestibular and ocular motor interaction. Current Opinion in Neurology, 13, 13.

    Article  CAS  PubMed  Google Scholar 

  • Dieterich, M., & Brandt, T. (2008). Functional brain imaging of peripheral and central vestibular disorders. Brain, 131, 2538–2552.

    Article  PubMed  Google Scholar 

  • Dieterich, M., Bense, S., Stephan, T., Yousry, T. A., & Brandt, T. (2003). fMRI signal increases and decreases in cortical areas during small-field optokinetic stimulation and central fixation. Experimental Brain Research, 148, 117–127.

    Article  Google Scholar 

  • Dieterich, M., Bauermann, T., Best, C., Stoeter, P., & Schlindwein, P. (2007). Evidence for cortical visual substitution of chronic bilateral vestibular failure (an fMRI study). Brain, 130, 2108–2116.

    Article  PubMed  Google Scholar 

  • Duvernoy, H. M. (1995). The human brain stem and cerebellum (p. 430). New York: Springer-Verlag.

    Google Scholar 

  • Forman, S. D., Cohen, J. D., Fitzgerald, M., Eddy, W. F., Mintun, M. A., & Noll, D. C. (1995). Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magnetic Resonance in Medicine, 33, 636–647.

    Article  CAS  PubMed  Google Scholar 

  • Fuentes, R., Petersson, P., Siesser, W. B., Caron, M. G., & Nicolelis, M. A. L. (2009). Spinal cord stimulation restores locomotion in animal models of Parkinson's disease. Science, 323, 1578.

    Article  CAS  PubMed  Google Scholar 

  • Hammond, C., Ammari, R., Bioulac, B., & Garcia, L. (2008). Latest view on the mechanism of action of deep brain stimulation. Movement Disorders, 23, 2111–2121.

    Article  PubMed  Google Scholar 

  • Herrick, J. L., & Keifer, J. (2000). Central Trigeminal and Posterior Eighth Nerve Projections in the Turtle Chrysemys picta Studied in vitro. Brain, Behavior and Evolution, 51, 183–201.

  • Indovina, I., Maffei, V., Bosco, G., Zago, M., Macaluso, E., & Lacquaniti, F. (2005). Representation of visual gravitational motion in the human vestibular cortex. Science, 308, 416–419.

    Article  CAS  PubMed  Google Scholar 

  • Johnstone, T., Ores Walsh, K. S., Greischar, L. L., Alexander, A. L., Fox, A. S., Davidson, R. J., et al. (2006). Motion correction and the use of motion covariates in multiple-subject fMRI analysis. Human Brain Mapping, 27, 779–788.

    Article  PubMed  Google Scholar 

  • Kaczmarek, K. A., & Bach-y-Rita, P. (1995). Tactile displays. In W. Barfield & T. A. Furness (Eds.), Virtual environments and advanced interface design (pp. 349–414). USA: Oxford University Press.

    Google Scholar 

  • Kelley, D. J., Oakes, T. R., Greischar, L. L., Chung, M. K., Ollinger, J. M., & Greene, E. (2008). Automatic physiological waveform processing for fMRI noise correction and analysis. PLoS ONE, 3, e1751.

    Article  PubMed  Google Scholar 

  • Kikuchi, M., Naito, Y., Senda, M., Okada, T., Shinohara, S., Fujiwara, K., et al. (2009). Cortical activation during optokinetic stimulation—an fMRI study. Acta Oto-laryngologica, 129, 440–443.

    Article  PubMed  Google Scholar 

  • Kleinschmidt, A., Thilo, K. V., Buchel, C., Gresty, M. A., Bronstein, A. M., & Frackowiak, R. S. J. (2002). Neural correlates of visual-motion perception as object-or self-motion. Neuroimage, 16, 873–882.

    Article  PubMed  Google Scholar 

  • Kovacs, S., Peeters, R., Smits, M., De Ridder, D., Van Hecke, P., & Sunaert, S. (2006). Activation of cortical and subcortical auditory structures at 3T by means of a functional magnetic resonance imaging paradigm suitable for clinical use. Investigative Radiology, 41, 87–96.

    Article  PubMed  Google Scholar 

  • Kovacs, G., Raabe, M., & Greenlee, M. W. (2008). Neural correlates of visually induced self-motion illusion in depth. Cerebral Cortex, 18, 1779–1787.

    Article  PubMed  Google Scholar 

  • Kupers, R., Fumal, A., de Noordhout, A. M., Gjedde, A., Schoenen, J., & Ptito, M. (2006). Transcranial magnetic stimulation of the visual cortex induces somatotopically organized qualia in blind subjects. Proceedings of the National Academy of Sciences, 103, 13256–13260.

    Article  CAS  Google Scholar 

  • Langer, T., Fuchs, A. F., Scudder, C. A., & Chubb, M. C. (1985). Afferents to the flocculus of the cerebellum in the rhesus macaque as revealed by retrograde transport of horseradish peroxidase. Journal of Comparative Neurology, 235, 1–25.

    Article  CAS  PubMed  Google Scholar 

  • Lozano, C. A., Kaczmarek, K. A., & Santello, M. (2009). Electrotactile stimulation on the tongue: intensity perception, discrimination, and cross-modality estimation. Somatosensory & Motor Research, 26, 50–63.

    Article  Google Scholar 

  • Lund, T. E., Nørgaard, M. D., Rostrup, E., Rowe, J. B., & Paulson, O. B. (2005). Motion or activity: their role in intra-and inter-subject variation in fMRI. Neuroimage, 26, 960–964.

    Article  PubMed  Google Scholar 

  • Marano, E., Marcelli, V., Stasio, E. D., Bonuso, S., Vacca, G., Manganelli, F., et al. (2005). Trigeminal stimulation elicits a peripheral vestibular imbalance in migraine patients. Headache: the Journal of Head and Face Pain, 45, 325–331.

    Google Scholar 

  • Mergner, T., Schweigart, G., Maurer, C., & Blümle, A. (2005). Human postural responses to motion of real and virtual visual environments under different support base conditions. Experimental Brain Research, 167, 535–556.

    Article  CAS  Google Scholar 

  • Miller, G. (2009). Neuropsychiatry. Rewiring faulty circuits in the brain. Science, 323, 1554–1556.

    Article  CAS  PubMed  Google Scholar 

  • Montgomery, E. B., & Gale, J. T. (2008). Mechanisms of action of deep brain stimulation (DBS). Neuroscience and Biobehavioral Reviews, 32, 388–407.

    Article  PubMed  Google Scholar 

  • Nichols, T., & Hayasaka, S. (2003). Controlling the familywise error rate in functional neuroimaging: a comparative review. Statistical Methods in Medical Research, 12, 419–446.

    Article  PubMed  Google Scholar 

  • O’Connor, K. W., Loughlin, P. J., Redfern, M. S., & Sparto, P. J. (2008). Postural adaptations to repeated optic flow stimulation in older adults. Gait & Posture, 28, 385–391.

    Article  Google Scholar 

  • Ohlendorf, S., Sprenger, A., Speck, O., Haller, S., & Kimmig, H. (2008). Optic flow stimuli in and near the visual field centre: a group fMRI study of motion sensitive regions. PLoS ONE, 3, e4043.

    Article  PubMed  Google Scholar 

  • Palmisano, S., Pinniger, G. J., Ash, A., & Steele, J. R. (2009). Effects of simulated viewpoint jitter on visually induced postural sway. Perception, 38, 442–453.

    Article  PubMed  Google Scholar 

  • Petrie, A., & Sabin, C. (2005). Medical statistics at a glance. Malden: Wiley-Blackwell. 160 pp.

    Google Scholar 

  • Pietrini, P., Ptito, M., & Kupers, R. (2009). Blindness and consciousness: New light from the dark. In S. Laureys, & G. Tononi G (Eds.), The neurology of consciousness. New York: Academic Press, pp. 360–374.

  • Poirier, C., De Volder, A. G., & Scheiber, C. (2007). What neuroimaging tells us about sensory substitution. Neuroscience and Biobehavioral Reviews, 31, 1064–1070.

    Article  PubMed  Google Scholar 

  • Previc, F. H., Liotti, M., Blakemore, C., Beer, J., & Fox, P. (2000). Functional imaging of brain areas involved in the processing of coherent and incoherent wide field-of-view visual motion. Experimental Brain Research, 131, 393–405.

    Article  CAS  Google Scholar 

  • Ptito, M., Moesgaard, S. M., Gjedde, A., & Kupers, R. (2005). Cross-modal plasticity revealed by electrotactile stimulation of the tongue in the congenitally blind. Brain, 128, 606.

    Article  PubMed  Google Scholar 

  • Redfern, M. S., & Furman, J. M. (1994). Postural sway of patients with vestibular disorders during optic flow. Journal of Vestibular Research, 4, 221–230.

    CAS  PubMed  Google Scholar 

  • Robinson, B. S., Cook, J. L., Richburg, C. M. C., & Price, S. E. (2009). Use of an electrotactile vestibular substitution system to facilitate balance and gait of an individual with gentamicin-induced bilateral vestibular hypofunction and bilateral transtibial amputation. Journal of Neurologic Physical Therapy, 33, 150–159.

    PubMed  Google Scholar 

  • Sampaio, E., Maris, S., & Bach-y-Rita, P. (2001). Brain plasticity:‘visual’acuity of blind persons via the tongue. Brain Research, 908, 204–207.

    Article  CAS  PubMed  Google Scholar 

  • Satoh, Y., Ishizuka, K. I., & Murakami, T. (2009). Modulation of the masseteric monosynaptic reflex by stimulation of the vestibular nuclear complex in rats. Neurosci Lett, 466, 16–20.

    Google Scholar 

  • Slobounov, S., Wu, T., Hallett, M., Shibasaki, H., Slobounov, E., & Newell, K. (2006). Neural underpinning of postural responses to visual field motion. Biological Psychology, 72, 188–197.

    Article  PubMed  Google Scholar 

  • Sunaert, S., Van Hecke, P., Marchal, G., & Orban, G. A. (1999). Motion-responsive regions of the human brain. Experimental Brain Research, 127, 355–370.

    Article  CAS  Google Scholar 

  • Thurrell, A., & Bronstein, A. (2002). Vection increases the magnitude and accuracy of visually evoked postural responses. Experimental Brain Research, 147, 558–560.

    Article  CAS  Google Scholar 

  • Tyler, M., Danilov, Y., & Bach-Y-Rita, P. (2003). Closing an open-loop control system: vestibular substitution through the tongue. Journal of Integrative Neuroscience, 2, 159–164.

    Article  PubMed  Google Scholar 

  • van Asten, W., Gielen, C., & Gon, J. J. D. (1988). Postural adjustments induced by simulated motion of differently structured environments. Experimental Brain Research, 73, 371–383.

    Article  Google Scholar 

  • Vuillerme, N., & Cuisinier, R. (2009). Sensory supplementation through tongue electrotactile stimulation to preserve head stabilization in space in the absence of vision. Investigative Ophthalmology & Visual Science, 50, 476–481.

    Article  Google Scholar 

  • Vuillerme, N., Pinsault, N., Fleury, A., Chenu, O., Demongeot, J., Payan, Y., et al. (2008). Effectiveness of an electro-tactile vestibular substitution system in improving upright postural control in unilateral vestibular-defective patients. Gait Posture, 28, 711–715.

    Article  PubMed  Google Scholar 

  • Walker, S. C., Helm, P. A., & Lavery, L. A. (1997). Gait pattern alteration by functional sensory substitution in healthy subjects and in diabetic subjects with peripheral neuropathy. Archives of Physical Medicine and Rehabilitation, 78, 853–856.

    Article  CAS  PubMed  Google Scholar 

  • Webster, B. R., Celnik, P. A., & Cohen, L. G. (2006). Noninvasive brain stimulation in stroke rehabilitation. NeuroRx, 3, 474–481.

    Article  PubMed  Google Scholar 

  • Williams, J. A., Imamura, M., & Fregni, F. (2009). Updates on the use of non-invasive brain stimulation in physical and rehabilitation medicine. Journal of Rehabilitation Medicine, 41, 305–311.

    Article  PubMed  Google Scholar 

  • Yamada, M., Tanemura, K., Okada, S., Iwanami, A., Nakamura, M., Mizuno, H., et al. (2007). Electrical stimulation modulates fate determination of differentiating embryonic stem cells. Stem Cells, 25, 562–570.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Kelsey Hawkins for clinical coordination and Dana Tudorascu for statistical consultation. Also thank you to Sterling Johnson for use of the goggle display system. This study was supported by grant number T90DK070079 and R90DK071515 from the National Institute of Diabetes and Digestive and Kidney Diseases, 1UL1RR025011 from the Clinical and Translational Science Award (CTSA) program of the National Center for Research Resources, National Institutes of Health, and UW-I&EDR funding. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Diabetes and Digestive and Kidney Diseases or the National Institutes of Health.

Disclosures

Joseph Wildenberg was supported by grant numbers T90DK070079 and R90DK071515 from the National Institute of Diabetes and Digestive and Kidney Diseases. Authors Danilov, Kaczmarek, and Tyler have an ownership interest in Advanced Neurorehabilitation, LLC, which has intellectual property rights in the field of research reported in this publication. Mary Meyerand reported no financial or potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph C. Wildenberg.

Additional information

Author Contributions

J.C.W. designed, collected, and analyzed all data and prepared the manuscript. M.E.T. and Y.P.D. performed CN-NINM stimulation of all subjects and edited the manuscript. K.A.K. and M.E.M. provided technical and analysis expertise and edited the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wildenberg, J.C., Tyler, M.E., Danilov, Y.P. et al. Sustained cortical and subcortical neuromodulation induced by electrical tongue stimulation. Brain Imaging and Behavior 4, 199–211 (2010). https://doi.org/10.1007/s11682-010-9099-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-010-9099-7

Keywords

Navigation