Skip to main content

Advertisement

Log in

A strain energy-based approach to the low-cycle fatigue damage mechanism in a high-strength spring steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Low-cycle fatigue tests were conducted using smooth, cylindrical specimens under a strain-controlled, fully reversed condition for a high-strength spring steel heat treated to different strength levels. The variation of the cyclic deformation substructure was observed with a transmission electron microscope (TEM). The results indicate that the average plastic strain energy dissipated per cycle (ΔW ps ) is an important parameter upon which a consistent evaluation of the cyclic stress-strain, the strain-life, and the plastic strain energy-life relationships is made feasible. Furthermore, the total plastic strain energy dissipated prior to failure (W f ), determined on the basis of ΔW ps , is proven to be another important parameter, from the variation of which the extent of local damage accumulation can be evaluated. Confirmed by the results of TEM observations, a strain localization-induced damage mechanism is proposed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.H. Ong: Int. J. Fatigue, 1993, vol. 15, pp. 213–19.

    Article  CAS  Google Scholar 

  2. H.J. Roven and E. Nes: Acta Metall. Mater., 1991, vol. 39, pp. 1735–54.

    Article  CAS  Google Scholar 

  3. K.S. Chan: Metall. Trans. A, 1993, vol. 24A, pp. 2473–86.

    CAS  Google Scholar 

  4. L.F. Coffin, Jr.: Trans. ASME, 1954, vol. 76, pp. 931–50.

    CAS  Google Scholar 

  5. S.S. Manson: Heat Transfer Symposium, University of Michigan Engineering Research Institute, Ann Arbor, MI, 1953, pp. 9–75.

    Google Scholar 

  6. L. Bairstow: Phil. Trans. R. Soc. London, Ser. A, 1910, vol. 210, pp. 35–55.

    Google Scholar 

  7. M.A. Miner: Trans. ASME, 1945, vol. 67, p. A159.

  8. N. Enomoto: Proc. ASTM, 1955, vol. 55, p. 903.

    Google Scholar 

  9. R.F. Hanstock: Proc. Phys. Soc., 1947, vol. 59, pp. 275–87.

    Article  CAS  Google Scholar 

  10. P.P. Benham and H. Ford: J. Mech. Eng. Sci., 1961, vol. 3, pp. 119–32.

    Google Scholar 

  11. JoDean Morrow: Internal Friction, Damping and Cyclic Plasticity, ASTM STP 378, ASTM, Philadelphia, PA, 1965, pp. 45–87.

    Google Scholar 

  12. G.R. Halford: J. Mater., 1966, vol. 1, pp. 3–18.

    Google Scholar 

  13. D. Lefebvre and F. Ellyin: Int. J. Fatigue, 1984, vol. 6, pp. 9–15.

    Article  Google Scholar 

  14. S.R. Mediratta, V. Ramaswamy, and P. Rama Rao: Int. J. Fatigue, 1988, vol. 10, pp. 13–19.

    Article  Google Scholar 

  15. K.M. Golos: Mater. Sci. Eng. A, 1989, vol. A111, pp. 63–69.

    CAS  Google Scholar 

  16. Y.W. Chung and W.J. Lee: Mater. Sci. Eng. A, 1994, vol. A186, pp. 121–28.

    Google Scholar 

  17. N. Eswara Prasad, A.G. Paradkar, G. Malakondaiah, and V.V. Kutumbarao: Scripta Metall. Mater., 1994, vol. 30, pp. 1497–1502.

    Article  Google Scholar 

  18. S.G.S. Raman and K.A. Padmanabhan: Int. J. Fatigue, 1995, vol. 17, pp. 271–77.

    Article  CAS  Google Scholar 

  19. W.H. Kim and C. Laird: Acta Metall., 1978, vol. 26, pp. 777–87.

    Article  CAS  Google Scholar 

  20. K. Pohl, P. Mayr, and E. Marcherauch: Scripta Metall., 1980, vol. 14, pp. 1167–69.

    Article  Google Scholar 

  21. H. Mughrabi, K. Herz, and X. Stark: Int. J. Fatigue, 1981, vol. 17, pp. 193–220.

    CAS  Google Scholar 

  22. C. Laird, P. Charsley, and H. Mughrabi: Mater. Sci. Eng., 1986, vol. 81, pp. 433–50.

    Article  CAS  Google Scholar 

  23. P. Neuman: Mater. Sci. Eng., 1986, vol. 81, pp. 465–75.

    Article  Google Scholar 

  24. Y. Liu: Mater. Sci. Eng. A, 1989, vol. A113, pp. 237–44.

    CAS  Google Scholar 

  25. J.A. Bannantine, J.J. Comer, and J.L. Handrock: Fundamentals of Metal Fatigue Analysis, Prentice-Hall, Engewood Cliffs, NJ, 1990.

    Google Scholar 

  26. S. Matsuoka, M. Yuyama, and S. Nishijima: Trans. Jpn. Soc. Mech. Eng., 1986, vol. A52, pp. 1831–38.

    Google Scholar 

  27. R.W. Landgraf: Fatigue and Microstructures, ASM, Metals Park, OH, 1978, pp. 439–66.

    Google Scholar 

  28. O.H. Basquin: Am. Soc. Test. Mater. Proc., 1910, vol. 10, pp. 625–30.

    Google Scholar 

  29. P.N. Thielen, M.E. Fine, and R.A. Fournelle: Acta Metall., 1976, vol. 24, pp. 1–10.

    Article  Google Scholar 

  30. W.J. Plumbridge and N. Knee: Mater. Sci. Technol., 1985, vol. 1, pp. 577–82.

    CAS  Google Scholar 

  31. L.F. van Swam, R.M. Pelloux, and N.J. Grant: Metall. Trans., 1975, vol. 6, pp. 45–54.

    Google Scholar 

  32. A.C. Pickard and J.F. Knott: Low Cycle Fatigue, ASTM STP 942, ASTM, Philadelphia, PA, 1988, pp. 58–76.

    Google Scholar 

  33. S.G.S. Raman and K.A. Padmanabhan: Int. J. Fatigue, 1992, vol. 14, pp. 295–304.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D.M., Nam, W.J. & Lee, C.S. A strain energy-based approach to the low-cycle fatigue damage mechanism in a high-strength spring steel. Metall Mater Trans A 29, 1431–1439 (1998). https://doi.org/10.1007/s11661-998-0358-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-998-0358-9

Keywords

Navigation