Skip to main content
Log in

Characterization of Crystallographic Texture and Intra-Grain Morphology in Cross-Rolled Tantalum

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

We present a detailed characterization of crystallographic texture and in-grain morphology in high purity Tantalum (Ta) during cross-rolling. A Ta disk with random initial texture was rolled to a total reduction of 50 pct in four equal steps, with the disk being rotated by 90 deg around the normal direction (ND) after every rolling step. Samples were cut along ND and were characterized using electron backscatter diffraction (EBSD), before and after the final deformation. Through-thickness texture heterogeneity was observed in the deformed disk, with an increase in 〈111〉 and 〈100〉 volume fraction parallel to ND from the surface toward the disk mid-section. The deformed texture of the mid-section of the disk (i.e., experiencing limited shear) was found to have a strong γ-fiber and a weak α-fiber with presence of only {100} 〈110〉 texture component. From the grain-scale EBSD study, the deformed grain morphology was found to be one of the three major types: (a) un-fragmented, (b) fragmented-mottled, and (c) fragmented-banded or elongated deformation bands. The un-fragmented grains had 〈111〉 parallel to ND, with 〈110〉 parallel to the rolling direction or the transverse direction. The fragmented-mottled grains had multiple sub-grain orientations. The two major bands in the fragmented-banded grains had its 〈100〉 and 〈111〉 parallel to ND. In addition, they shared a common 〈110〉 with a misorientation of 30 deg. Through our knowledge of the known stable components formed during rolling of Ta, it was feasible to explain the orientations of such un-fragmented and fragmented-banded grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Raabe, K. Lucke, and G. Gottstein: J. De Physique IV, 1993, vol. 3, pp. 523-526.

    Google Scholar 

  2. D. Raabe, G. Schlenkert, H. Weisshaupt, and K. Lucke: Mat. Sci. Tech., 1994, vol. 10, pp. 299-305.

    Article  Google Scholar 

  3. D. Raabe, B. Mulders, G. Gottstein, and K. Lucke: Mat. Sci. Forum, 1994, vol. 157-162, pp. 841-846.

    Article  Google Scholar 

  4. K. H. Song, H. S. Kim, and W. Y. Kim: Mat. Sci. Forum, 2012, vol. 706-709, pp. 2652-2656.

    Article  Google Scholar 

  5. C. Deng, S. F. Liu, J. L. Ji, X. B. Hao, Z. Q. Zhang, and Q. Liu: J. Mat. Proc. Tech., 2014, vol. 214, pp. 462-469.

    Article  Google Scholar 

  6. Z. Zhang, D. Chen, H. Zhao, and S. Liu: Int. J. Ref. Met. Hard Mater., 2013, vol. 41, pp. 453-460.

    Article  Google Scholar 

  7. J. B. Clark, R. K. Garrett, Jr., T. L. Jungling, R. A. Vandermeer, and C. L. Vold: Met. Trans. A, 1991, vol. 22A, pp. 2039-2048.

    Article  Google Scholar 

  8. J. B. Clark, R. K. Garrett, T. L. Jungling, and R. I. Asfahani: Met. Trans. A, 1992, vol. 23A, pp. 2183-2191.

    Article  Google Scholar 

  9. H. R. Z. Sandim, J. P. Martins, and A. F. Padilha: Scripta Mater., 2001, vol. 45, pp. 733-738.

    Article  Google Scholar 

  10. H. R. Z. Sandim, J. P. Martins, A. L. Pinto, and A. F. Padilha: Mat. Sci. Engg. A, 2005, vol. 392, pp. 209-221.

    Article  Google Scholar 

  11. H. Lim, J. D. Carroll, C. C. Battaile, T. E. Buchheit, B. L. Boyce, and C. R. Weinberger: Int. J. Plasticity, 2014, vol. 60, 1-18.

    Article  Google Scholar 

  12. M. Kothari and L. Anand: J. Mech. Phys. Solids, 1998, vol. 46, pp. 51-83.

    Article  Google Scholar 

  13. S. Nemat-Nasser, T. Okinaka, and L. Ni: J. Mech. Phys. Solids, 1998, vol. 46, pp. 1009-1038.

    Article  Google Scholar 

  14. S. N. Kuchnicki, R. A. Radovitzky, and A. M. Cuitino: Int. J. Plasticity, 2008, vol. 24, pp. 2173-2191.

    Article  Google Scholar 

  15. R. A. Lebensohn and C. N. Tome: Mat. Sci. Engg. A, 1994, vol. 175, pp. 71-82.

    Article  Google Scholar 

  16. M. Knezevic, I. J. Beyerlein, M. L. Lovato, C. N. Tome, A. W. Richards, and R. J. McCabe: Int. J. Plasticity, 2014, vol. 62, pp. 93-104.

    Article  Google Scholar 

  17. D.W. Richards, M.P. Kramer, J.W. House, and R.J. De Angelis: Int. C. Diff. Data, Advances in X-ray Analysis, 2003, vol. 46, pp. 285–90.

  18. J. Tarasiuk, Ph. Gerber, B. Bacroix: Acta Mat., 2002, vol. 50, pp. 1467-1477.

    Article  Google Scholar 

  19. P. Poelt, C. Sommitsch, S. Mitsche, and M. Walter: Mat. Sci. Engg. A, 2006, vol. 420, pp. 306-314.

    Article  Google Scholar 

  20. D. Stojakovic: Proc. Appl. Ceramics, 2012, vol. 6, pp. 1-13.

    Article  Google Scholar 

  21. B. J. Duggan, G. L. Liu, and L. X. Zhang: Mat. Sci. Forum, 1998, vol. 273-275, pp. 291-298.

    Article  Google Scholar 

  22. Y. Y. Tse, G. L. Liu, and B. J. Duggan: Scripta Mater., 2000, vol. 42, pp. 25-30.

    Article  Google Scholar 

  23. C. S. Lee and B. J. Duggan: Acta Metall. Mater., 1993, vol. 41, pp. 2691-2699.

    Article  Google Scholar 

  24. A. Bhattacharyya, E. El-Danaf, S. R. Kalidindi, and R. D. Doherty: Int. J. Plasticity, 2001, vol. 17, pp. 861-883.

    Article  Google Scholar 

  25. F. Besson and J. H. Driver: Acta Mater., 2000, vol. 48, pp. 2101-2115.

    Article  Google Scholar 

  26. Q. Liu, J. Wert, and N. Hansen: Acta Mater., 2000, vol. 48, pp. 4267-4279.

    Article  Google Scholar 

  27. C. S. Lee, B. J. Duggan, and R. E. Smallman: Acta Metall. Mater., 1993, vol. 41, pp. 2265-2270.

    Article  Google Scholar 

  28. D. Kuhlmann-Wilsdorf: Acta Mater., 1999, vol. 47, pp. 1697-1712.

    Article  Google Scholar 

  29. S. R. Kalidindi, A. Bhattacharya, and R.D. Doherty: Proc. R. Soc. London A, 2004, vol. 460, pp. 1935-1956.

    Article  Google Scholar 

  30. F. J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd Ed., Elsevier Ltd., Oxford, UK, 2004.

    Google Scholar 

  31. Q. Liu, C. Maurice, J. Driver, and N. Hansen: Metall. Mater. Trans., 1998, vol. 29A, pp. 2333-2344.

    Article  Google Scholar 

  32. C. Maurice, J. H. Driver: Acta mater., 1997, vol. 45, pp. 4627-4638.

    Article  Google Scholar 

  33. H. R. Z. Sandim and D. Raabe: Scripta Mater., 2005, vol. 53, pp. 207-212.

    Article  Google Scholar 

  34. S. Suwas, R.A. Massion, L.S. Tóth, J.-J. Fundenberger, and B. Beausir: Mater. Sci. Eng. A, 2009, vol. 520, pp. 134–46.

    Article  Google Scholar 

  35. D.E. Laughlin and K. Hono: Physical Metallurgy, 5th ed., vol. 1, Elsevier Ltd., Oxford, U.K., 2014.

    Google Scholar 

  36. J. F. Butler Jr and H. Hu: Mat. Sci. Engg. A, 1989, vol. 114, pp. L29-L33.

    Article  Google Scholar 

  37. R. Quey, P. R. Dawson, J. H. Driver: J. Mech. Phys. Solids, 2012, vol. 60, pp. 509-524.

    Article  Google Scholar 

Download references

Acknowledgments

Support for this research was provided by H.C. Starck, Newton, MA, 02461, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Bhattacharyya.

Additional information

Manuscript submitted May 27, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharyya, A., Knezevic, M. & Abouaf, M. Characterization of Crystallographic Texture and Intra-Grain Morphology in Cross-Rolled Tantalum. Metall Mater Trans A 46, 1085–1096 (2015). https://doi.org/10.1007/s11661-014-2686-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2686-2

Keywords

Navigation