Skip to main content

Advertisement

Log in

Texture Evolution and Ultrafine Grain Formation in Cross-Cryo-Rolled Zircaloy-2

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The texture and mechanical properties of cross-rolled zircaloy-2 at 77 and 300 K were investigated. Cross-rolling at 77 K was performed to impart different thickness reductions of 25% and 50%, while at 300 K with 25%, 50%, 75% and 85% reductions to the sample. EBSD analysis of deformed sample showed that near-basal orientation is not deformed completely after 50% rolling reduction. The activation of prismatic silp, \( \{ 11\bar{2}2\} \) contraction twin and \( \{ 10\bar{1}2\} \) extension twin were evident from the deformed microstructure at 77 K. The propensity for activation of basal slip <a> at 77 K was also observed. The deformation of the sample at 300 K occurs by prismatic, basal <a> and pyramidal <c + a> slips, which were predicted by pole figures. After annealing, the tensile strengths (735 and 710 MPa) are almost the same for 50% cryo-cross-rolled and room-temperature cross-rolled zircaloy-2 with almost 2.7% difference in their ductility. KAM analysis of the deformed samples was made to estimate the stored strain energy and dislocation density. Annealing of deformed sample at 673 K for 30 min results in recrystallization, which leads to the formation of ultrafine grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.R. Macewen, J. Faber Jr., A.P.L. Turner, Acta Mater. 31, 657 (1983)

    Article  Google Scholar 

  2. R.L. Mehan, F.W. Wiesinger, Mechanical Properties of Zircaloy-2, AEC Research and Development Report (1961)

  3. E.F. Ibrahim, In-Reactor Creep of Zirconium-Alloy Tubes and Its Correlation with Uniaxial Data: Applications-Related Phenomena for Zirconium and Its Alloys, ASTM STP 458, American Society for Testing and Materials (1969), pp. 18–36

  4. R.G. Ballinger, R.M. Pelloux, J. Nucl. Mater. 97, 231 (1981)

    Article  Google Scholar 

  5. K. Linga Murty, I. Charit, Prog. Nucl. Energy 48, 325 (2006)

  6. E. Tenckhoff, Deformation Mechanisms, Texture, and Anisotropy in Zirconium and Zircaloy, American Society for Testing and Materials (1988)

  7. Y.N. Wang, J.C. Huang, Mater. Chem. Phys. 81, 11 (2003)

    Article  Google Scholar 

  8. R.J. McCabe, E.K. Cerreta, A. Misra, G.C. Kaschner, C.N. Tome, Philos. Mag. A 86, 3595 (2006)

    Article  Google Scholar 

  9. M. Knezevic, I.J. Beyerlein, T. Nizolek, N.A. Mara, Mater. Res. Lett. 1, 133 (2013)

    Article  Google Scholar 

  10. R.J. McCabe, G. Proust, E.K. Cerreta, A. Misra, Int. J. Plast 25, 454 (2009)

    Article  Google Scholar 

  11. A. Akhtar, Metall. Trans. A 6(1217), 1217–1222 (1975)

    Article  Google Scholar 

  12. G. Monnet, B. Devincre, L.P. Kubin, Acta Mater. 52, 4317 (2004)

    Article  Google Scholar 

  13. G.W. Groves, A. Kelly, Philos. Mag. 89, 877 (1963)

    Article  Google Scholar 

  14. A. Akhtar, Acta Metall. 21, 1 (1973)

    Article  Google Scholar 

  15. C.N. Tome, P.J. Maudlin, R.A. Lebensohn, G.C. Kaschner, Acta Mater. 49, 3085 (2001)

    Article  Google Scholar 

  16. A. Akhtar, J. Nucl. Mater. 47, 79 (1973)

    Article  Google Scholar 

  17. B.F. Luan, Q. Ye, J.W. Chen, H.B. Yu, D.L. Zhou, Y.C. Xin, Trans. Nonferrous Met. Soc. China 23, 2890 (2013)

    Article  Google Scholar 

  18. Y. Takayama, J.A. Szpunar, Mater. Trans. 45, 2316 (2004)

    Article  Google Scholar 

  19. C.S. Barrett, T.B. Massalski, Structure of Metals (McGraw-Hill Book Company, New York, 1966)

    Google Scholar 

  20. S. Goel, N. Keskar, R. Jayaganthan, I.V. Singh, D. Srivastava, G.K. Dey, N. Saibaba, Mater. Sci. Eng. A 603, 23 (2014)

    Article  Google Scholar 

  21. S. Goel, R. Jayaganthan, I.V. Singh, D. Srivastava, G.K. Dey, N. Saibaba, Mater. Des. 55, 612 (2014)

    Article  Google Scholar 

  22. H.L. Cox, D.G. Sopwith, Proc. Phys. Soc. 49, 134 (1937)

    Article  Google Scholar 

  23. H.J. Bunge, Kristall Technik 5, 145 (1970)

    Article  Google Scholar 

  24. J.H. Shen, Y.L. Li, Q. Wei, Mater. Sci. Eng. A 582, 270 (2013)

    Article  Google Scholar 

  25. W.B. Hutchinson, Int. Met. Rev. 29, 25 (1984)

    Article  Google Scholar 

  26. M. Matsuo, S. Hayami, S. Nagashima, Adv. X-Ray Anal. 14, 214 (1971)

    Google Scholar 

  27. B.L. Averbach, M.B. Bever, M.F. Comerford, J.S. Leach, Acta Metall. 4, 477 (1956)

    Article  Google Scholar 

  28. R.L. Every, M. Hartherly, Texture 1, 183 (1974)

    Article  Google Scholar 

  29. J.S. Kalland, Y.C. Huang, Met. Sci. 18, 381 (1984)

    Article  Google Scholar 

  30. M. Taheri, H. Weiland, A. Rollett, Metall. Mater. Trans. A 37, 19 (2006)

    Article  Google Scholar 

  31. A. Godfrey, W.Q. Cao, Q. Liu, N. Hansen, Metall. Mater. Trans. A 36, 2371 (2005)

    Article  Google Scholar 

  32. N.P. Gurao, S. Sethuraman, S. Suwas, Metall. Mater. Trans. A 44, 1497 (2013)

    Article  Google Scholar 

  33. D.F. Guo, M. Li, Y.D. Shi, Z.B. Zhang, H.T. Zhang, X.N. Liu, B.N. Wei, X.Y. Zhang, Mater. Des. 34, 275 (2012)

    Article  Google Scholar 

  34. D.F. Guo, M. Li, Y.D. Shi, Z.B. Zhang, T.Y. Ma, H.T. Zhang, X.Y. Zhang, Mater. Sci. Eng. A 558, 611 (2012)

    Article  Google Scholar 

  35. S.K. Sahoo, V.D. Hiwarkar, I. Samajdar, G.K. Dey, D. Srivastav, R. Tiwari, S. Banerjee, Scr. Mater. 56, 963 (2007)

    Article  Google Scholar 

  36. C.D. Judge, Thesis, Queen’s University Kingston (2009)

  37. Q. Yu, J. Sun, J.W. Morris Jr, A.M. Minor, Scr. Mater. 69, 57 (2013)

    Article  Google Scholar 

  38. C.H. Cáceresa, P. Lukáč, Philos. Mag. 88, 977 (2008)

    Article  Google Scholar 

  39. G. Monnet, B. Devincre, L.P. Kubin, Acta Mater. 52, 4317 (2004)

    Article  Google Scholar 

  40. F.C. Frank, Report on the Symposium on the Plastic Deformation of Crystalline Solids (Carnegie Institute of Technology, Carnegie, 1950), pp. 150–154

  41. Q. Liu, D.J. Jensen, N. Hansen, Acta Mater. 46, 5819 (1998)

    Article  Google Scholar 

  42. T. Unga, O. Castelnau, G. Ribarik, M. Drakopoulos, J.L. Bechade, T. Chauveau, A. Snigirev, I. Snigireva, C. Schroer, B. Bacroix, Acta Mater. 55, 1117 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors, Dr. R. Jayaganthan, expresses his sincere thanks to BRNS, Bombay for their financial grant to this work (No. BRN-577-MMD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jayaganthan.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goel, S., Jayaganthan, R., Singh, I.V. et al. Texture Evolution and Ultrafine Grain Formation in Cross-Cryo-Rolled Zircaloy-2. Acta Metall. Sin. (Engl. Lett.) 28, 837–846 (2015). https://doi.org/10.1007/s40195-015-0267-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-015-0267-z

Keywords

Navigation