Skip to main content
Log in

In Situ Measurement of the Thermal Contact Resistance of an Al Lap Joint During Braze Processing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A technique was developed, using a laser flash thermal diffusivity apparatus, to measure the thermal contact resistance, R c, of an Al lap joint during braze processing. The method required a determination of the temperature dependence of the thermal diffusivity of the individual Al braze sheets, as well as a two-layer lap joint made from these sheets, under identical conditions. A two-layer modeling method was then used to analyze the above data to determine R c for the lap joint as a function of processing temperature. This in situ analysis of R c for a developing joint during brazing was able to distinguish both solid-state and liquid-phase reactions occurring at the faying surfaces of the joint. Consequently, it represents a powerful, new experimental tool that can be used to investigate the mechanisms of braze joint formation and the thermal properties of a joint as a function of processing condition. In the particular case of this study, the technique demonstrates that the use of a Ni-based fluxless brazing process to join aluminum (Al) sheets, reduced the R c of the lap joint by 100-folds from 1.3 × 10−4 m2 K/W before brazing to 1.35 × 10−6 m2 K/W after brazing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, A. Vieregge (2000) Mater. Sci. Eng. A A280:37–49.

    Article  Google Scholar 

  2. J. Zahr, S. Oswald, M. Turpe, H.J. Ullrich, U. Fussel, Vacuum, 2012, 86, pp. 1216–18.

    Article  Google Scholar 

  3. G. Zhang, Y. Bao, Y. Jiang and H. Zhu, J. Mater. Eng. Perform., 2011, 20(8), pp. 1451–56.

    Article  Google Scholar 

  4. D. M. Turriff, S.F. Corbin, M. Kozdras, Acta Mater., 2010, 58(4), pg. 1332–41.

    Article  Google Scholar 

  5. D.P. Sekulic, Int. J. Eng. Sci., 2001, 39, pp. 229–41.

    Article  Google Scholar 

  6. G.J. Marshall, R.K. Bolingbroke, A. Gray, Metall. Trans. A., 1993, 24A, pp. 1935–42.

    Article  Google Scholar 

  7. B.E. Cheadle and K.F. Dockus: SAE Technical Paper 880446, 1988, DOI:10.4271/880446.

  8. S.F. Corbin and D.M. Turriff: in Characterization of Materials, E.N. Kaufmann, ed., John Wiley & Sons, Inc., New York, 2012, pp. 510–16.

  9. R.C Campbell, Therm. Conduct., 2010, 30, pp. 328–38.

    Google Scholar 

  10. H.J. Lee: Ph.D. Thesis, Purdue University, Xerox University Microfilms, 1975.

  11. T.R. Lee: Ph.D. Thesis, Purdue University, University Microfilms International, 1977.

  12. L. Chen, A.M. Limargam, D.R. Clarke, Computational Materials Science, 2010, 50, pp. 77–82.

    Article  Google Scholar 

  13. L. Vozar and W. Hohenauer (2003/2004) High Temp. High Press. 35/36:253–64.

    Article  Google Scholar 

  14. F. Albouchi, F. Mzali, S.B. Nasrallah,, J. Porous Media, 2009, 10(6), pp. 537–49.

    Google Scholar 

  15. P. Miranzo, M.I. Osendi, E. Garcia, A.J.S. Fernandes, V.A. Silva, F.M. Costa, R.F. Silva, Diam. Relat. Mater., 2002, 11, pp. 703–07.

    Article  Google Scholar 

  16. V. Casalegno, P. Vavassori, M. Valle, M. Ferraris, M. Salvo, G. Pintsuk, J. Nucl. Mater., 2010, 407, pp. 83–87.

    Article  Google Scholar 

  17. W.J. Parker, R.J. Jenkins, C.P. Butler and G.L. Abbott, J. Appl. Phys., 1961, 32, pp. 1679–81.

    Article  Google Scholar 

  18. R.D. Cowan, J. Appl. Phys., 1963, 34, pp. 926–29.

    Article  Google Scholar 

  19. J. Blumm and J. Opfermann (2002) High Temp. High Press 34:515–21.

    Article  Google Scholar 

  20. J. Blumm and S. Lemarchand (2002) High Temp. High Press. 34:523–28.

    Article  Google Scholar 

  21. R.W. Richter, H. Ipser, Intermetallics, 11, 2003, pp. 101–09.

    Article  Google Scholar 

  22. Y. S. Touloukian, R.W. Powell, C.Y. Ho, M.C. Nicolaou (1973) Thermophysical Properties of Matter 10, Thermal Diffusivity. IFI/Plenum Press, New York, pp. 1609–83.

    Google Scholar 

  23. J. E. Yoo, A. Shan, I. Moo (1999) J Mater Sci 34:2679–83.

    Article  Google Scholar 

  24. P. Donnadieu, G. Lapasset, B. Thanabornsoubut, and T.A. Sanders, Jr.: Proceedings of 4 th International Conference on Automotive Alloys; “Their Physical and Mechanical Properties”, 1994, p. 668–72.

  25. J.W. Martin (1980) Microstructure in Hardened Alloys. Cambridge University Press, Cambridge.

    Google Scholar 

  26. E. Kaschnitz, R. Ebner, Int. J. Thermophys., 2007, 28(2), pp. 711–22.

    Article  Google Scholar 

  27. C.L. Yeh, C.T. Lin, Int. Commun. Heat Mass Transf., 2003, 30(7), pp. 987–96.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge the important financial support and in-kind contributions of the National Sciences and Engineering Research Council of Canada (NSERC), the Initiative for Automotive Manufacturing Innovation (IAMI), and Dana Canada Corporation, Oakville, ON. They would also like to thank Peirre Marois at the Novelis Global Technology Centre (NGTC) for his assistance in braze sheet chemical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Francis Corbin.

Additional information

Manuscript submitted March 18, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corbin, S.F., Turriff, D.M., Kozdras, M. et al. In Situ Measurement of the Thermal Contact Resistance of an Al Lap Joint During Braze Processing. Metall Mater Trans A 45, 835–842 (2014). https://doi.org/10.1007/s11661-013-1997-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1997-z

Keywords

Navigation