Skip to main content
Log in

Research progress on microstructure tuning of heat-resistant cast aluminum alloys

  • Lightweight Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

With development of present energy-saving society, lightweight and green development in the automotive and aerospace industries have put forward urgent demands for heat-resistant cast aluminum alloys. Present cast aluminum alloys are of lightweight and have excellent mechanical properties when serving in ambient environment. However, when serving at temperatures of 200–300 ℃ or even higher, the alloys inevitably soften and the high-temperature mechanical properties decline rapidly, hardly meeting the requirements for high-performance equipments. This paper summarizes the development process of classic heat-resistant aluminum alloys, especially the microstructural characteristics of heat-resistant cast aluminum alloys in the past decade, and reviews the current microstructure tuning strategies of heat-resistant aluminum alloys from the aspects of intrinsic heat resistance of the second phases, phase interface modification, diffusion-controlled phase transition, grain boundary stabilization and composite material design. Finally, we propose the prospects for the future development of heat-resistant aluminum alloys.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

Data availability

Not Applicable.

References

  1. Tian RZ (2006) Cast aluminum alloy. Central South University Pres, Changsha

    Google Scholar 

  2. Wang JG, Wang ZT (2013) Progress in deformed aluminum alloys for aerospace (1). Light Alloy Fabr Technol 41(8):1–6

    Google Scholar 

  3. Polmear I, StJohn D, Nie JF, Qian M (2017) Light alloys: metallurgy of the light metals, 5th edn. Butterworth-Heinemann, London

    Google Scholar 

  4. Zhang XM, Liu SD (2013) Aviation aluminum alloy and its material processing. Mater China 32(1):39–55

    Google Scholar 

  5. Polmear IJ, Couper MJ (1988) Design and development of an experimental wrought aluminum alloy for use at elevated temperatures. Metall Trans A 19:1027–1035

    Article  Google Scholar 

  6. Weakley-Bollin SC, Donlon W, Wolverton C, Allison JE, Jones JW (2004) Modeling the age-hardening behavior of Al–Si–Cu alloys. Metall Mater Trans A 35:2407–2418

    Article  Google Scholar 

  7. Zhang JY, Gao YH, Yang C, Zhang P, Kuang J, Liu G, Sun J (2020) Microalloying Al alloys with Sc: a review. Rare Met 39(6):636–650

    Article  CAS  Google Scholar 

  8. Yang C, Liu G, Sun J, Xue H, Zhang P, Zhang JY (2023) A high-temperature resistant Al–Cu–Mg–Ag–Sc alloy and its preparation method, China: CN115821130A

  9. Udovsky AL, Karpushkin VN, Kozodaeva EA (1995) General algorithm, its mathematical basis and computer autonomic program for calculation of phase diagrams of binary systems, containing p disordered phases of variable and q phases of constant compositions at (p, q)≤10. Calphad 19(3):245–277

    Article  CAS  Google Scholar 

  10. Vijeesh V, Prabhu KN (2013) Review of microstructure evolution in hypereutectic Al–Si alloys and its effect on wear properties. T Indian I Metals 67:1–18

    Google Scholar 

  11. Tian FQ, Li NK, Cui JZ (2005) The development process and direction of strengthening and toughening ultra-high-strength aluminum alloys. Light Alloy Fabr Technol 33(12):1–9

    Google Scholar 

  12. Sui YD, Wang QD (2015) Application research and development of cast heat-resistant aluminum alloys in engines. Mater Rep: Rev 29(3):14–19

    CAS  Google Scholar 

  13. Yildirim M, Ozyurek D (2013) The effects of Mg amount on the microstructure and mechanical properties of Al–Si–Mg alloys. Mater Des 51:767–774

    Article  CAS  Google Scholar 

  14. Chrominski W, Lewandowska M (2016) Precipitation phenomena in ultrafine grained Al–Mg–Si alloy with heterogeneous microstructure. Acta Mater 103:547–557

    Article  CAS  Google Scholar 

  15. Wang X, Esmaeili S, Lloyd DJ (2006) The sequence of precipitation in the Al–Mg–Si–Cu alloy AA6111. Metall Mater Trans A 37:2691–2699

    Article  Google Scholar 

  16. Marioara CD, Anderson SJ, Zandbergen HW, Holmestad R (2005) The influence of alloy composition on precipitates of the Al–Mg–Si system. Metall Mater Trans A 36:691–702

    Google Scholar 

  17. Caceres CH, Djurdjevic MB, Stockwell TJ, Sokolowski JH (1999) The effect of Cu content on the level of microporosity in Al–Si–Cu–Mg casting alloys. Scr Mater 40(5):631–637

    Article  CAS  Google Scholar 

  18. Jia XL, Chen DH, Zhu XR, Hou LQ, Peng YJ (2010) Effect of Cu on the microstructure and mechanical properties of Al–Si–Cu–Ni alloy. Spec-cast Non-ferr Alloys 30(9):871–873

    CAS  Google Scholar 

  19. Guo YC, Xu T, Li JP, Cao C, Dong SP (2016) Effect of Cu content on liquid precipitation phase in eutectic piston aluminum alloy. Chin J Rare Met 40(3):207–214

    Google Scholar 

  20. Shabestari SG, Keshavarz M, Hejazi MM (2009) Effect of strontium on the kinetics of formation and segregation of intermetallic compounds in A380 aluminum alloy. J Alloys Compd 477(1–2):892–899

    Article  CAS  Google Scholar 

  21. Karamouz M, Azarbarmas M, Emamy M (2014) On the conjoint influence of heat treatment and lithium content on microstructure and mechanical properties of A380 aluminum alloy. Mater Des 59:377–382

    Article  CAS  Google Scholar 

  22. Feng MB, Chu DN, Ao BQ, Yuan XD, Wang Y (2007) New progress in world automotive aluminum alloy material technology. Automobile Technol Mater 10:1–5

  23. Li YG, Yang Y, Wu YY, Wang LY, Liu XF (2010) Quantitative comparison of three Ni-containing phases to the elevated-temperature properties of Al–Si piston alloys. Mater Sci Eng A 527(26):7132–7137

    Article  Google Scholar 

  24. Yang Y, Li YG, Wu WY, Zhao DG, Liu XF (2011) Effect of existing form of alloying elements on the microhardness of Al–Si–Cu–Ni–Mg piston alloy. Mater Sci Eng A 528(18):5723–5728

    Article  CAS  Google Scholar 

  25. Yang Y, Yu KL, Li YG, Zhao DG, Liu XF (2012) Evolution of nickel-rich phases in Al–Si–Cu–Ni–Mg piston alloys with different Cu additions. Mater Des 33:220–225

    Article  CAS  Google Scholar 

  26. Javidani M, Larouche D (2014) Application of cast Al–Si alloys in internal combustion engine components. Int Mater Rev 59(3):132–158

    Article  CAS  Google Scholar 

  27. Ochuku TM (2013) Analysis of microstructures of cast A–Si alloys and their correlation to mechanical properties. Ph.d. dissertation, University of Nairobi.

  28. Hou LC, Peng YJ, Zhou LZ, Zhang GM, Xu Y, Gao MD (2013) High power density diesel engine aluminum piston materials and casting technology. Veh Eng 1:89–92

    Google Scholar 

  29. Kaufman JG, Rooy EL (2004) Aluminum alloy castings properties, processes and applications. ASM International, New York

    Book  Google Scholar 

  30. Kaufman JG (1993) Aluminum and aluminum alloys. ASM International, New York

    Google Scholar 

  31. Kaufman JG (1999) Properties of aluminum alloys: tensile Creep and Fatigue Data at High and Low Temperatures. ASM International, New York

    Google Scholar 

  32. Thomas I (2002) Casting system for thixoforms. US:6382302.

  33. Zhang TH (1988) MAHLE Piston aluminum alloy. Veh Eng 4:57–60

    Google Scholar 

  34. Zamani M, Seifeddine S, Jarfors AEW (2015) High temperature tensile deformation behavior and failure mechanisms of an Al–Si–Cu–Mg cast alloy—the microstructural scale effect. Mater Des 86:361–370

    Article  CAS  Google Scholar 

  35. Liao HC, Tang YY, Suo XJ, Li GJ, Hu YY, Dixit US, Petrov P (2017) Dispersoid particles precipitated during the solutionizing course of Al–12 wt%Si–4 wt%Cu–1.2 wt%Mn alloy and their influence on high temperature strength. Mater Sci Eng A 699:201–209

    Article  CAS  Google Scholar 

  36. Shaha SK, Czerwinski F, Kasprzak W, Chen DL (2014) Tensile and compressive deformation behavior of the Al–Si–Cu–Mg cast alloy with additions of Zr, V and Ti. Mater Des 59:352–358

    Article  CAS  Google Scholar 

  37. Xu C, Xiao WL, Zheng RX, Hanada S, Yamagata H, Ma CL (2015) The synergic effects of Sc and Zr on the microstructure and mechanical properties of Al–Si–Mg alloy. Mater Des 88:485–492

    Article  CAS  Google Scholar 

  38. Pramod SL, Ravikirana RAKP, Murty BS, Bakshi SR (2016) Effect of Sc addition and T6 aging treatment on the microstructure modification and mechanical properties of A356 alloy. Mater Sci Eng A 674:438–450

    Article  CAS  Google Scholar 

  39. Colombo M, Gariboldi E, Morri A (2017) Er addition to Al–Si–Mg-based casting alloy: effects on microstructure, room and high temperature mechanical properties. J Alloys Compd 708:1234–1244

    Article  CAS  Google Scholar 

  40. Yang YY, Zhong SY, Chen Z, Wang ML, Ma NH, Wang HW (2015) Effect of Cr content and heat-treatment on the high temperature strength of eutectic Al–Si alloys. J Alloys Compd 647:63–69

    Article  CAS  Google Scholar 

  41. Rahimian M, Amirkhanlou S, Blake P, Ji SX (2018) Nanoscale Zr-containing precipitates: a solution for significant improvement of high-temperature strength in Al–Si–Cu–Mg alloys. Mater Sci Eng A 721:328–338

    Article  CAS  Google Scholar 

  42. Shaha SK, Czerwinski F, Kasprzak W, Friedman J, Chen DL (2016) Ageing characteristics and high-temperature tensile properties of Al–Si–Cu–Mg alloys with micro-additions of Cr, Ti, V and Zr. Mater Sci Eng A 652:353–364

    Article  CAS  Google Scholar 

  43. Sui YD, Wang QD, Liu T, Ye B, Jiang HY, Ding WJ (2015) Influence of Gd content on microstructure and mechanical properties of cast Al–12Si–4Cu–2Ni–0.8Mg alloys. J Alloys Compd 644:228–235

    Article  CAS  Google Scholar 

  44. Meng FC, Wu YY, Hu KQ, Li Y, Sun QQ, Liu XF (2019) Evolution and strengthening effects of the heat-resistant phases in Al–Si piston alloys with different Fe/Ni ratios. Mater 12(16):2506–2518

    Article  CAS  Google Scholar 

  45. Li GJ, Liao HC, Xu AQ (2018) Two quite different primary Mn-rich phases in Al–Si–Cu–Mn heat-resistant alloy and its effect to mechanical properties. Mater Sci Eng A 730:36–40

    Article  CAS  Google Scholar 

  46. Sui YD, Wang QD (2015) Application research and development of cast heat-resistant aluminum alloys in engines. Mater Rep 29(3):14–19

    CAS  Google Scholar 

  47. Zhang ZK, Che Y, Men SQ, Chen XM (2014) Aging precipitation phase of Al–Cu–Mn high-strength aluminum alloy. Spec-cast Non-ferr Alloys 34(10):1114–1116

    Google Scholar 

  48. Xia QK, Yu RC, Li YT, Gao QQ (2006) Research progress on Ω phase of Al–Cu–Mg–Ag alloy. J Hunan Inst of Eng 1:27–30

    Google Scholar 

  49. Abis S, Mengucci P, Riontino G (1994) Influence of Si additions on the ageing process of an Al–Cu–Mg–Ag alloy. Philos Mag A 70(5):851–868

    Article  CAS  Google Scholar 

  50. Li KD, Chang E (2003) Explanation of the porosity distribution in A 206 aluminum alloy castings. Trans Am Found Soc 111:267–273

    CAS  Google Scholar 

  51. Jia PJ, Chen BF (2009) Performance and application of ZL205A high-strength cast aluminum alloy. Light Alloy Fabr Technol 37(11):10–12

    CAS  Google Scholar 

  52. Zhang CB, Wang ZT (2013) Aerospace casting aluminum alloy(3). Light Alloy Fabr Technol 41(1):1–14

    Google Scholar 

  53. Xiong YC, Liu BC (1998) Current status and future development of cast aluminum alloys. Spec-cast Non-ferr Alloys 18(4):1–5

    Google Scholar 

  54. Sun MT (2011) Research on the composition and properties of A201 aluminum alloy. Ph.d. Dissertation, Shenyang Foundry Research Institute

  55. Lin B (2014) Study on the formation characteristics and mechanical properties of iron-rich phase in squeeze casting Al–5.0Cu alloy. Ph.d. Dissertation, South China University of Technology

  56. Xiang S, Yuan L, Yang C et al (2023) Precipitating thermally reinforcement phase in aluminum alloys for enhanced strength at 400 ℃. J Mater Sci Technol 172:71–82

    Google Scholar 

  57. Ling K, Chen JW, Ran HW et al (2022) Effect of V additions on the microstructure and mechanical properties of Al–Cu–Mg–Ag alloy. Mater Today Commun 33:104197–104205

    Article  CAS  Google Scholar 

  58. Mei ZQ, Liu ZY, Bai S, Wang J, Cao J (2021) Effects of yttrium additions on microstructures and mechanical properties of cast Al–Cu–Mg–Ag alloys. J Alloys Compd 870:159435–159443

    Article  CAS  Google Scholar 

  59. Liu G, Yang C, Xue H, Zhang P, Sun J, Zhang JY (2023) A high-temperature resistant Al–Cu–Mg aluminum alloy and its preparation method, China, CN115747593A

  60. Gao YH, Yang C, Zhang JY, Cao LF, Liu G, Sun J, Ma E (2019) Stabilizing nanoprecipitates in Al–Cu alloys for creep resistance at 300℃. Mater Res Lett 7(1):18–25

    Article  CAS  Google Scholar 

  61. Gao YH, Cao LF, Yang C, Zhang JY, Liu G, Sun J (2019) Co-stabilization of θ’-Al2Cu and Al3Sc precipitates in Sc-microalloyed Al–Cu alloy with enhanced creep resistance. Mater Today Nano 6:100035–100050

    Article  Google Scholar 

  62. Gao YH, Guan PF, Su R et al (2020) Segregation-sandwiched stable interface suffocates nanoprecipitate coarsening to elevate creep resistance. Mater Res Lett 8(12):446–453

    Article  CAS  Google Scholar 

  63. Gao YH, Cao LF, Kuang J, Song H, Liu G, Zhang JY, Sun J (2021) Solute repositioning to tune the multiple microalloying effects in an Al-Cu alloy with minor Sc, Fe and Si addition. Mater Sci Eng A 803:140509–140518

    Article  CAS  Google Scholar 

  64. Okamoto H (2004) Al–Ni (aluminum–nickel). J Phase Equilib Diff 25(4):394

    Article  Google Scholar 

  65. Okamoto H (2011) Al–Ce (aluminum–cerium). J Phase Equilib Diff 32(4):392–393

    Article  CAS  Google Scholar 

  66. Sims ZC, Rios OR, Weiss D et al (2017) High performance aluminium–cerium alloys for high-temperature applications. Mater Horiz 4(6):1070–1078

    Article  CAS  Google Scholar 

  67. Pandey P, Makineni SK, Gault B, Chattopadhyay K (2019) On the origin of a remarkable increase in the strength and stability of an Al rich Al–Ni eutectic alloy by Zr addition. Acta Mater 170:205–217

    Article  CAS  Google Scholar 

  68. Ma Y, Ahmed A, Ji G, Zhang MX, Williams L, Chen Z, Ji V (2020) Atomic-scale investigation of the interface precipitation in a TiB2 nanoparticles reinforced Al–Zn–Mg–Cu matrix composite. Acta Mater 185:287–299

    Article  CAS  Google Scholar 

  69. Wang WM, Pan FS, Zeng SM (2004) Research status of development and application of silicon carbide particle reinforced aluminum matrix composites. Ordnance Mater Sci Eng 3:61–67

    Google Scholar 

  70. Yang TL, Chen Y (2006) Research progress of particle reinforced metal matrix composites. Foundry Technol 27(8):871–873

    CAS  Google Scholar 

  71. Zu LJ, Luo SJ (2001) Study on the powder mixing and semi-solid extrusion forming process of SiCp/2024Al composites. J Mater Process Tech 114(3):189–193

    Article  CAS  Google Scholar 

  72. Ma ZY, Tjong SC (1999) The high-temperature creep behaviour of 2124 aluminium alloys with and without particulate and SiC-whisker reinforcement. Compos Sci Technol 59(5):737–747

    Article  CAS  Google Scholar 

  73. Albiter A, Leon CA, Drew RAL, Bedolla E (2000) Microstructure and heat-treatment response of Al-2024/TiC composites. Mater Sci Eng A 289(1–2):109–115

    Article  Google Scholar 

  74. Jin P, Xiao BL, Wang QZ, Ma ZY, Liu Y, Li S (2011) Effects of solution temperature on aging behavior and properties of SiCp/Al-Cu-Mg composites. Mater Sci Eng A 528(3):1504–1511

    Article  Google Scholar 

  75. Sui YD (2016) Study on the microstuctural and elevated temperature properties if cast Al–Si–Cu–Ni–Mg alloys. Ph.d. dissertation, Shanghai Jiaotong University.

  76. Weng YY, Ding LP, Zhang ZZ et al (2019) Effect of Ag addition on the precipitation evolution and interfacial segregation for Al–Mg–Si alloy. Acta Mater 180:301–316

    Article  CAS  Google Scholar 

  77. Dang B, Zhang X, Chen YZ, Chen CX, Wang HT, Liu F (2016) Breaking through the strength-ductility trade-off dilemma in an Al–Si-based casting alloy. Sci Rep 6:30874–30883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang X, Huang LK, Zhang B, Chen YZ, Duan SY, Liu G, Yang CL, Liu F (2019) Enhanced strength and ductility of A356 alloy due to composite effect of near-rapid solidification and thermo-mechanical treatment. Mater Sci Eng A 753:168–178

    Article  CAS  Google Scholar 

  79. Guan RG, Shen YF, Zhao ZY, Wang X (2017) A high-strength, ductile Al–0.35Sc–0.2Zr alloy with good electrical conductivity strengthened by coherent nanosized-precipitates. J Mater Sci Technol 33(3):215–223

    Article  CAS  Google Scholar 

  80. Booth-Morrison C, Seidman DN, Dunand DC (2012) Effect of Er additions on ambient and high-temperature strength of precipitation-strengthened Al–Zr–Sc–Si alloys. Acta Mater 60(8):3643–3654

    Article  CAS  Google Scholar 

  81. Booth-Morrison C, Dunand DC, Seidman DN (2011) Coarsening resistance at 400℃ of precipitation-strengthened Al–Zr–Sc–Er alloys. Acta Mater 59(18):7029–7042

    Article  CAS  Google Scholar 

  82. Wen SP, Gao KY, Li Y, Huang H, Nie ZR (2011) Synergetic effect of Er and Zr on the precipitation hardening of Al–Er–Zr alloy. Scr Mater 65(7):592–595

    Article  CAS  Google Scholar 

  83. Vo NQ, Dunand DC, Seidman DN (2014) Improving aging and creep resistance in a dilute Al–Sc alloy by microalloying with Si, Zr and Er. Acta Mater 63:73–85

    Article  CAS  Google Scholar 

  84. Booth-Morrison C, Mao Z, Diaz M, Dunand DC, Wolverton C, Seidman DN (2012) Role of silicon in accelerating the nucleation of Al3(Sc, Zr) precipitates in dilute Al–Sc–Zr alloys. Acta Mater 60(12):4740–4752

    Article  CAS  Google Scholar 

  85. Plotkowski A, Rios O, Sridharan N, Sims Z, Unocic K, Ott RT, Dehoff PR, Babu SS (2017) Evaluation of an Al–Ce alloy for laser additive manufacturing. Acta Mater 126:507–519

    Article  CAS  Google Scholar 

  86. Suwanpreecha C, Pandee P, Patakham U, Limmaneevichitr C (2018) New generation of eutectic Al–Ni casting alloys for elevated temperature services. Mater Sci Eng A 709:46–54

    Article  CAS  Google Scholar 

  87. Davies RK, Randle V, Marshall GJ (1998) Continuous recrystallization-related phenomena in a commercial Al–Fe–Si alloy. Acta Mater 46(17):6021–6032

    Article  CAS  Google Scholar 

  88. Liu Y, Michi RA, Dunand DC (2019) Cast near-eutectic Al-12.5 wt. %Ce alloy with high coarsening and creep resistance. Mater Sci Eng A 767:138440–138448

    Article  CAS  Google Scholar 

  89. Ostwald W (1901) Analytisch chemie, 3rd edn. Engelmann, Leipzig

    Google Scholar 

  90. Lifshitz IM, Slezov VV (1959) Kinetics of diffusive decomposition of supersaturated solid solutions. Sov Phys JETP 35(8):479–492

    Google Scholar 

  91. Allen CM, O’Reilly KAQ, Cantor B, Evans PV (1998) Intermetallic phase selection in 1XXX Al alloys. Prog Mater Sci 43(2):89–170

    Article  CAS  Google Scholar 

  92. Zhang LF, Gao JW, Damoah LNW, Robertson DG (2012) Removal of iron from aluminum: A review. Min Proc Ext Met Rev 33(2):99–157

    Article  Google Scholar 

  93. Lu Q, Wang JC, Li HC et al (2023) Synergy of multiple precipitate/matrix interface structures for a heat resistant high-strength Al alloy. Nat Commun 14(1):2959–2970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ding LP, Jia ZH, Nie JF et al (2018) The structural and compositional evolution of precipitates in Al–Mg–Si–Cu alloy. Acta Mater 145:437–450

    Article  CAS  Google Scholar 

  95. Ding LP, Hu H, Jia ZH et al (2016) The disordered structure of Q’ and C phases in Al–Mg–Si–Cu alloy. Scr Mater 118:55–59

    Article  CAS  Google Scholar 

  96. Liu L, Chen JH, Wang SB, Liu CH, Yang SS, Wu CL (2014) The effect of Si on precipitation in Al–Cu–Mg alloy with a high Cu/Mg ratio. Mater Sci Eng A 606:187–195

    Article  CAS  Google Scholar 

  97. Xue H, Li JM, Wang ZQ, Bai JY, Zhao ZH, Qin GW (2023) Improving heat resistance of Al–Cu–Li alloy with the addition of Sc and Si. Sci China Mater 66:4285–4294

    Article  CAS  Google Scholar 

  98. Xue H, Yang C, De Geuser F et al (2023) Highly stable coherent nanoprecipitates via diffusion-dominated solute uptake and interstitial ordering. Nat Mater 22:434–441

    Article  CAS  PubMed  Google Scholar 

  99. Shin WS, Kim YJ (2023) Microstructural evolutions and strengthening mechanism according to the aging temperatures of a high Si cast aluminum alloy. Korean J Met Mater 61(7):524–533

    Article  CAS  Google Scholar 

  100. Li YG, Yang Y, Wu YY, Wang LY, Liu XF (2010) Quantitative comparison of three Ni-containing phases to the elevated-temperature properties of Al–Si piston alloys. Mat Sci Eng A 527(26):7132–7137

    Article  Google Scholar 

  101. Rakhmonov JU, Bahl S, Shyam A, Dunand DC (2022) Cavitation-resistant intergranular precipitates enhance creep performance of θ′-strengthened Al–Cu based alloys. Acta Mater 228:117788–117800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Du HQ, Zhang SS, Zhang BY et al (2021) Ca-modified Al–Mg–Sc alloy with high strength at elevated temperatures due to a hierarchical microstructure. J Mater Sci 56:16145–16157. https://doi.org/10.1007/s10853-021-06310-5

    Article  CAS  Google Scholar 

  103. Zhang SS, Du HQ, Yao ZJ et al (2022) Superior high temperature creep resistance of a cast Al–Mg–Ca–Sc alloy with multi-scale hierarchical microstructures. Mat Sci Eng A 850:143533–143541

    Article  CAS  Google Scholar 

  104. Xiong BW, Xu ZF, Yan QS, Cai CC, Zheng YH, Lu BP (2010) Fabrication of SiC nanoparticulates reinforced Al matrix composites by combining pressureless infiltration with ball-milling and cold-pressing technology. J Alloys Compd 497(1–2):L1–L4

    Article  CAS  Google Scholar 

  105. Lu K (2014) Making strong nanomaterials ductile with gradients. Science 345(6203):1455–1456

    Article  CAS  PubMed  Google Scholar 

  106. Wu XL, Yang MX, Yuan FP, Wu GL, Wei YJ, Huang XX, Zhu YT (2015) Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc Natl Acad Sci 112(47):14501–14505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zheng RX, Li GD, Zhang Z, Zhang YT, Yue SY, Chen X, Ameyama K, Ma CL (2019) Manipulating the powder size to achieve enhanced strength and ductility in harmonic structured Al alloy. Mater Res Lett 7(6):217–224

    Article  CAS  Google Scholar 

  108. Zan YN, Zhou YT, Liu ZY et al (2019) Enhancing strength and ductility synergy through heterogeneous structure design in nanoscale Al2O3 particulate reinforced Al composites. Mater Des 166:107629–107636

    Article  CAS  Google Scholar 

  109. Zhang ZH, Topping T, Li Y et al (2011) Mechanical behavior of ultrafine-grained Al composites reinforced with B4C nanoparticles. Scr Mater 65(8):652–655

    Article  CAS  Google Scholar 

  110. Jiang L, Yang H, Yee JK, Mo X, Topping T, Lavernia EJ, Schoenung JM (2016) Toughening of aluminum matrix nanocomposites via spatial arrays of boron carbide spherical nanoparticles. Acta Mater 103:128–140

    Article  CAS  Google Scholar 

  111. Qin SY, Zhang GD (2000) Preparation of high fracture performance SiCp-6061A1/6061A1 composite. Mater Sci Eng A 279(1–2):231–236

    Article  Google Scholar 

  112. Kaveendran B, Wang GS, Huang LJ, Geng L, Luo Y, Peng HX (2013) In situ (Al3Zrp+Al2O3np)/2024Al metal matrix composite with controlled reinforcement architecture fabricated by reaction hot pressing. Mater Sci Eng A 583:89–95

    Article  CAS  Google Scholar 

  113. Lu T, Chen WP, Li B, Mao MD, Li ZX, Liu YX, Scudino S (2019) Influence mechanisms of Zr and Fe particle additions on the microstructure and mechanical behavior of squeeze-cast 7075Al hybrid composites. J Alloys Compd 798:587–596

    Article  CAS  Google Scholar 

  114. Zhang XZ, Chen TJ, Ma S, Qin H, Ma JY (2021) Overcoming the strength-ductility trade-off of an aluminum matrix composite by novel core-shell structured reinforcing particulates. Compos Part B-Eng 206:108541–108555

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (Grant No. 2023YFB3700149) and the National Science Fund for Distinguished Young Scholars (Grant No. 51525101).

Author information

Authors and Affiliations

Authors

Contributions

JML wrote the manuscript, GWQ conceived the outline of the manuscript and finally revised it. JML, ZQW, NT and ZHZ searched for literature and summarized them. JYB and HX analyzed the related data. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Gaowu Qin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not Applicable.

Additional information

Handling Editor: P. Nash.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to a retrospective Open Access cancellation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, Z., Bai, J. et al. Research progress on microstructure tuning of heat-resistant cast aluminum alloys. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-09538-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-024-09538-z

Navigation