Skip to main content
Log in

High-temperature deformation behavior of a gamma TiAl alloy—Microstructural evolution and mechanisms

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present investigation was carried out in the context of the internal-variable theory of inelastic deformation and the dynamic-materials model (DMM), to shed light on the high-temperature deformation mechanisms in TiAl. A series of load-relaxation tests and tensile tests were conducted on a fine-grained duplex gamma TiAl alloy at temperatures ranging from 800 °C to 1050 °C. Results of the load-relaxation tests, in which the deformation took place at an infinitesimal level (ε ≅ 0.05), showed that the deformation behavior of the alloy was well described by the sum of dislocation-glide and dislocation-climb processes. To investigate the deformation behavior of the fine-grained duplex gamma TiAl alloy at a finite strain level, processing maps were constructed on the basis of a DMM. For this purpose, compression tests were carried out at temperatures ranging from 800 °C to 1250 °C using strain rates ranging from 10 to 10−4/s. Two domains were identified and characterized in the processing maps obtained at finite strain levels (0.2 and 0.6). One domain was found in the region of 980 °C and 10−3/s with a peak efficiency (maximum efficiency of power dissipation) of 48 pct and was identified as a domain of dynamic recrystallization (DRx) from microstructural observations. Another domain with a peak efficiency of 64 pct was located in the region of 1250 °C and 10−4/s and was considered to be a domain of superplasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.-W. Kim: J. Met., 1995, vol. 47, pp. 39–41.

    CAS  Google Scholar 

  2. R.W. Hayes and B. London: Acta Metall., 1992, vol. 40, p. 2167.

    Article  CAS  Google Scholar 

  3. P.L. Martin, M.G. Mendiratta, and H.A. Lipsitt: Metall. Trans. A, 1983, vol. 14A, p. 2170.

    CAS  Google Scholar 

  4. Y.-W. Kim and F.H. Froes: in High Temperature Aluminides and Intermetallics, S.H. Wang et al., eds., TMS, Warrendale, PA, 1990, pp. 465–92.

    Google Scholar 

  5. S.C. Huang and E.L. Hall: Metall. Trans. A, 1991, vol. 22A, p.427.

    CAS  Google Scholar 

  6. S.L. Semiatin, D.C. Vollmer, S. El-Soudani, and C. Su: Scripta Metall. Mater., 1991, vol. 25, p. 1409.

    Article  Google Scholar 

  7. H.E. Deve, A.G. Evans, and D.S. Shih: Acta Metall. Mater., 1992, vol. 40, p. 1259.

    Article  CAS  Google Scholar 

  8. T. Kawabata, T. Kanai, and O. Izumi: Acta Metall. Mater., 1985, vol. 33, pp. 1355–66.

    Article  CAS  Google Scholar 

  9. M. Nobuki and T. Tsujimoto: Iron Steel Inst. Jpn. Int. 31 (1991), pp. 931–937.

    CAS  Google Scholar 

  10. T.K. Ha and Y.W. Chang: Acta Mater. 1998, vol. 46, p. 2741.

    Article  CAS  Google Scholar 

  11. Y.V.R.K. Prasad and S. Sasidhara: Hot Working Guide—A Compendium of Processing Maps, ASM INTERNATIONAL, Materials Park, OH, 1997.

    Google Scholar 

  12. J.S. Kim, Y.W. Chang, and C.S. Lee: Metall. Mater. Trans. A, 1998, vol. 29A, p. 217.

    Article  CAS  Google Scholar 

  13. J.S. Kim, W.J. Nam, and C.S. Lee: Met. Mater., 1998, vol. 4, p. 1041.

    Article  CAS  Google Scholar 

  14. D. Lee and E.W. Hart: Metall. Trans., 1971, vol. 2, pp. 1245–48.

    Google Scholar 

  15. T.K. Ha, H.J. Sung, K.S. Kim, and Y.W. Chang: Mater. Sci. Eng. 1999, vol. 271, p. 166.

    Google Scholar 

  16. F. Appel, U. Lorenz, M. Oehring, U. Sparka, and R. Wagner: Mater. Sci. Eng. A, 1997, vol. 233 (1–2).

    Article  Google Scholar 

  17. W.J. Zhang, Z.C.C. Liu, G.L. Chen, and Y.-W. Kim: Mater. Sci. Eng., 1999, vol. A271, pp. 416–23.

    CAS  Google Scholar 

  18. T.K. Ha and Y.W. Chang: Scripta Mater., 1996, vol. 35, p. 1317.

    Article  CAS  Google Scholar 

  19. J.S. Kim, J.H. Kim, Y.T. Lee, C.G. Park, and C.S. Lee: Mater. Sci. Eng. A, 1999, vol. A263, pp. 272–80.

    CAS  Google Scholar 

  20. V. Seetharaman and C.M. Lombard: in Microstructure/Property Relationships in Titanium Aluminides and Alloys, Y.-W. Kim and R.R. Boyer, eds., TMS, (Warrendale, PA, 1991), pp. 237–51.

    Google Scholar 

  21. H. Ziegler: in Progress in Solid Mechanics, I.N. Sneddon and R. Hill, eds., Wiley, New York, NY, 1965, vol. 4, pp. 91–193.

    Google Scholar 

  22. N. Ravichandran and Y.V.R.K. Prasad: Mater. Sci. Eng., 1992, vol. A156, p. 195.

    CAS  Google Scholar 

  23. N. Srinivasan and Y.V.R.K. Prasad: Mater. Sci. Technol., 1992, vol. 9, p. 206.

    Google Scholar 

  24. O. Sivakesavam, I.S. Rao, and Y.V.R.K. Prasad: Mater. Sci. Technol., 1993, vol. 9, p. 805.

    CAS  Google Scholar 

  25. J.K. Chakravarty, Y.V.R.K. Prasad, and M.K. Asundi: Metall. Trans. A, 1991, vol. 22A, pp. 829–36.

    Google Scholar 

  26. J.A. Bailey and A.R.E. Singer: J. Inst. Met., 1963–64, vol. 92, p. 404.

    Google Scholar 

  27. N. Ravichandran and Y.V.R.K. Prasad: Metall. Trans. A, 1991, vol. 22A, pp. 2339–48.

    CAS  Google Scholar 

  28. G. Hug, A. Loiseau, and P. Veyssiere: Phil. Mag., 1988, vol. 57, p. 499.

    CAS  Google Scholar 

  29. J. Panova and D. Farkas: in Gamma Titanium Aluminides, Y.-W. Kim, R. Wagner, and M. Yamaguchi, eds., TMS, Warrendale, PA, 1995, pp. 331–38.

    Google Scholar 

  30. D.G. Morris, S. Gunter, and M. Leboeuf: Phil. Mag. A, 1994, vol. 69, p. 527.

    CAS  Google Scholar 

  31. P.K. Sagar and Y.V.R.K. Prasad: Z. Metall., 1998, vol. 89 (6), pp. 433–41.

    CAS  Google Scholar 

  32. C.M. Sabinash, S.M.L. Sastry, and K.L. Jerina: Mater. Sci. Eng. A, 1995, vols. A192–A193, pp. 837–47.

    Google Scholar 

  33. N. Fujitsuna, H. Ohyama, Y. Miyamoto, and Y. Ashida: Iron Steel Inst. Jpn. Int., 1991, vol. 31 (10), pp. 1147–53.

    CAS  Google Scholar 

  34. M.A. Morris and M. Leboeuf: Intermetallics, 1997, vol. 5, pp. 339–54.

    Article  CAS  Google Scholar 

  35. W.B. Lee, H.S. Yang, Y.-W. Kim, and A.K. Mukherjee: Scripta Metall., 1993, vol. 29, pp. 1403–08.

    Article  CAS  Google Scholar 

  36. Y.V.R.K. Prasad and T. Seshacharyulu: Int. Mater. Rev., 1988, vol. 43 (6), pp. 244–58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the symposium entitled “Fundamentals of Structural Intermetallics,” presented at the 2002 TMS Annual Meeting, February 21–27, 2002, in Seattle, Washington, under the auspices of the ASM and TMS Joint Committee on Mechanical Behavior of Materials.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.H., Chang, Y.W., Lee, C.S. et al. High-temperature deformation behavior of a gamma TiAl alloy—Microstructural evolution and mechanisms. Metall Mater Trans A 34, 2165–2176 (2003). https://doi.org/10.1007/s11661-003-0280-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0280-0

Keywords

Navigation