Skip to main content
Log in

Canonical duality for solving general nonconvex constrained problems

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

This paper presents a canonical duality theory for solving a general nonconvex constrained optimization problem within a unified framework to cover Lagrange multiplier method and KKT theory. It is proved that if both target function and constraints possess certain patterns necessary for modeling real systems, a perfect dual problem (without duality gap) can be obtained in a unified form with global optimality conditions provided.While the popular augmented Lagrangian method may produce more difficult nonconvex problems due to the nonlinearity of constraints. Some fundamental concepts such as the objectivity and Lagrangian in nonlinear programming are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Similarly, the canonical dual \(P^d({\varvec{\sigma }}, {{\varvec{\varsigma }}})\) in [12] is concave in \({\varvec{\sigma }}\) and \({{\varvec{\varsigma }}}\), respectively, but not concave in \(({\varvec{\sigma }}, {{\varvec{\varsigma }}}) \in \mathcal{S}^+_c\).

  2. The objectivity is only sufficient but not necessary for the canonical duality theory.

References

  1. Birgin, E.G., Castillo, R.A., Martnez, J.M.: Numerical comparison of augmented Lagrangian algorithms for nonconvex problems. Comput. Optim. Appl. 31, 31–55 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, Y., Gao, D.Y. : Global solutions to large-scale spherical constrained quadratic minimization via canonical dual approach, to appear in Math Mech Solids (2014)

  3. Ciarlet, P.G.: Linear and nonlinear functional analysis with applications. SIAM, Philadelphia (2013)

    MATH  Google Scholar 

  4. Gao, D.Y.: Duality principles in nonconvex system: theory, methods and applications. Kluwer Academic Publishers, Dordrecht (2000)

    Book  MATH  Google Scholar 

  5. Gao, D.Y.: Canonical dual transformation method and generalized triality theory in nonsmooth global optimization. J. Glob. Optim. 17, 127–160 (2000)

    Article  MATH  Google Scholar 

  6. Gao, D.Y.: Perfect duality theory and complete set of solutions to a class of global optimization problems. Optimization 52, 467–493 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gao, D.Y.: Nonconvex semi-linear problems and canonical duality solutions, in Advances in Mechanics and Mathematics II. In: Gao, D.Y., Ogden R.W. (eds.), pp. 261–311. Kluwer Academic Publishers (2003)

  8. Gao, D.Y.: Canonical duality theory: theory, method, and applications in global optimization. Comput. Chem. 33, 1964–1972 (2009)

    Article  Google Scholar 

  9. Gao, D.Y.: Canonical duality-triality: Unified understanding bifurcation, chaos, and NP-hard problems in complexsystems. To appear in Int. J. Bifurcation Chaos

  10. Gao, D.Y., Latorre, V., Ruan, N.: Advances in canonical duality theory, Volume I and II: special issues of Mathematics Mechanics Solids (2015)

  11. Gao, D.Y., Ruan, N., Latorre, V.: Canonical duality-triality: Bridge between nonconvex analysis/mechanics and global optimization in complex systems. In: Advances in canonical duality theory. special issues of Mathematics Mechanics Solids arxiv.org/pdf/1410.2665v2.pdf (2014)

  12. Gao, D.Y., Ruan, N., Sherali, H.D.: Solutions and optimality criteria for nonconvex constrained global optimization problems. J. Glob. Optim. 45, 473–497 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gao, D.Y., Sherali, H.D.: Canonical duality: Connection between nonconvex mechanics and global optimization. In: Advances in Application Mathematics and Global Optimization. pp 249–316. Springer (2009)

  14. Gao, D.Y., Strang, G.: Geometric nonlinearity: potential energy, complementary energy, and the gap function. Quart. Appl. Math. 47, 487–504 (1989)

    MathSciNet  MATH  Google Scholar 

  15. Gao, D.Y., Wu, C.Z.: On the triality theory for a quartic polynomial optimization problem. J. Ind. Manag. Optim. 8(1), 229–242 (2012)

    Article  MathSciNet  Google Scholar 

  16. Gao, D.Y., Wu, C.: On the triality theory in global optimization, preprint available at, http://arxiv.org/abs/1104.2970 (2011)

  17. Gao, D.Y., Yang, W.C.: Minimal distance between two non-convex surfaces. Optimization 57, 705–714 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gao, T.K.: Complete solutions to a class of eighth-order polynomial optimization problems. IMA J. Appl. Math (2013). doi:10.1093/imamat/hxt033

  19. Glowinski, R.: Augmented Lagrangian Methods: applications to the numerical solution of boundary-value problems, Elsevier Science (2000)

  20. Lagrange, J.L.: Mecanique analytique. Courcier (1811), reissued by Cambridge University Press, 2009

  21. Latorre, V., Gao, D.Y.: Canonical dual solution to nonconvex radial basis neural network optimization problem. Neurocomputing 134, 189–197 (2013)

    Article  Google Scholar 

  22. Marsden, J.E., Hughes, T.J.R.: Mathematical foundations of elasticity, Prentice-Hall (1983)

  23. Morales-Silva, D., Gao, D.Y.: On the minimal distance between two surfaces, http://arxiv.org/abs/1210.1618 (2012)

  24. Nocedal, J., Wright, S. J.: Numerical optimization (2nd edition). Springer (2006)

  25. Powell, M.J.D.: The Lagrange method and SAO with bounds on the dual variables. Optim. Methods. Softw. 29, 224–238 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ruan, N., Gao, D.Y.: Global optimal solutions to a general sensor network localization problem. Perform. Eval. 75–76, 116 (2014)

    Google Scholar 

  27. Tröltzsch, A.: A sequential quadratic programming algorithm for equality-constrained optimization without derivatives, Optim. Lett. (2014)

  28. Voisei, M.D., Zalinescu, C.: Some remarks concerning Gao-Strang’s complementary gap function. Appl. Anal. 90, 1111–1121 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Voisei, M.D., Zalinescu, C.: Counterexamples to some triality and tri-duality results. J. Glob. Optim. 49, 173–183 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, Z.B., Fang, S.C., Gao, D.Y., Xing, W.X.: Canonical dual approach to solving the maximum cut problem. J. Glob. Optim. 54, 341–352 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, J., Gao, D.Y., Yearwood, J.: A novel canonical dual computational approach for prion AGAAAAGA amyloid fibril molecular modeling. J. Theor. Biol. 284, 149–157 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was supported by US Air Force Office of Scientific Research under the grant AFOSR FA9550-10-1-0487. Comments and suggestions from two anonymous referees are sincerely acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Yang Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latorre, V., Gao, D.Y. Canonical duality for solving general nonconvex constrained problems. Optim Lett 10, 1763–1779 (2016). https://doi.org/10.1007/s11590-015-0860-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-015-0860-0

Keywords

Navigation