Skip to main content

Canonical Primal–Dual Method for Solving Nonconvex Minimization Problems

  • Chapter
  • First Online:
Canonical Duality Theory

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 37))

Abstract

A new primal–dual algorithm is presented for solving a class of nonconvex minimization problems. This algorithm is based on canonical duality theory such that the original nonconvex minimization problem is first reformulated as a convex–concave saddle point optimization problem, which is then solved by a quadratically perturbed primal–dual method. Numerical examples are illustrated. Comparing with the existing results, the proposed algorithm can achieve better performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In fact, Problem (\(\mathscr {P}\)) is convex under the condition \(\bar{\chi }+\chi \ge 0\). The proof of this result is similar to that of Proposition 1 given in [16].

References

  1. Ball, J.M.: Some open problems in elasticity. Geometry, Mechanics, and Dynamics, pp. 3–59. Springer, New York (2002)

    Google Scholar 

  2. Birgin, E.G., Floudas, C.A., Martinez, J.M.: Global minimization using an Augmented Lagrangian method with variable lower-level constraints. Math. Program. Ser. A 125, 139–162 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gallier, J.: The Schur complement and symmetric positive semidefinite (and definite) matrices. www.cis.upenn.edu/jean/schurcomp.pdf

  4. Gao, D.Y.: Duality Principles in Nonconvex Systems: Theory Methods and Applications. Springer, New York (2000)

    Book  MATH  Google Scholar 

  5. Gao, D.Y.: Solutions and optimality to box constrained nonconvex minimization problems. J. Ind. Manag. Optim. 3(2), 293–304 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gao, D.Y.: Canonical duality theory: unified understanding and generalized solutions for global optimization. Comput. Chem. Eng. 33, 1964–1972 (2009)

    Article  Google Scholar 

  7. Gao, D.Y., Strang, G.: Geometric nonlinearity: potential energy, complementary energy, and the gap function. Q. Appl. Math. 47(3), 487–504 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gao, D.Y., Sherali, H.D.: Canonical duality: connection between nonconvex mechanics and global optimization. Advances in Applied Mathematics and Global Optimization, pp. 249–316. Springer, Berlin (2009)

    Google Scholar 

  9. Gao, D.Y., Ruan, N.: Solutions to quadratic minimization problems with box and integer constraints. J. Global Optim. 47, 463–484 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gao, D.Y., Wu, C.Z.: On the triality theory for a quartic polynomial optimization problem. J. Ind. Manag. Optim. 8(1), 229–242 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gao, D.Y., Ruan, N., Pardalos, P.M.: Canonical dual solutions to sum of fourth-order polynomials minimization problems with applications to sensor network localization. In: Pardalos, P.M., Ye, Y.Y., Boginski, V., Commander, C. (eds.) Sensors: Theory, Algorithms and Applications, vol. 61, pp. 37–54. Springer, Berlin (2012)

    Chapter  Google Scholar 

  12. Guler, O.: New proximal point algorithms for convex minimization. SIAM J. Optim. 2, 649–664 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. He, B.S., Liao, L.Z.: Improvement of some projection methods for monotone nonlinear variational inequalities. J. Optim. Theory Appl. 112, 111–128 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. He, B.S., Yuan, X.M.: An accelerated inexact proximal point algorithm for convex minimization. J. Optim. Theory Appl. 154, 536–548 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  16. Kaplan, A., Tichatschke, R.: Proximal point methods and nonconvex optimization. J. Global Optim. 13, 389–406 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kim, S., Kojima, M., Waki, H., Yamashita, M.: User Manual for SFSDP: a Sparse versions of Full SemiDefinite programming relaxation for sensor network localization problems. Research Reports on Mathematical and Computer Science, SERIES B (2009)

    MATH  Google Scholar 

  18. Kim, S., Kojima, M., Waki, H.: Exploiting sparsity in SDP relaxation for sensor network localization. SIAM J. Optim. 1, 192–215 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekonomika i Matematicheskie 12, 747–756 (1976)

    MathSciNet  MATH  Google Scholar 

  20. Lasserre, J.B.: Global optimization with polynomials and the problems of moments. SIAM J. Optim. 11, 796–817 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lewis, A.S., Wright, S.J.: A proximal method for composite minimization. arXiv:0812.0423v1

  22. Li, C., Wang, X.: On convergence of the Gauss–Newton method for convex composite optimization. Math. Program. 91, 349–356 (2002)

    Google Scholar 

  23. Löberg, J.: YALMIP: a toolbox for modeling and optimization in Matlab. In: Proceedings of the International Symposium on CACSD, Taipei, Taiwan, pp. 284–89 (2004)

    Google Scholar 

  24. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Prentice-Hall, New Jersey (1983)

    MATH  Google Scholar 

  25. More, J.J.: Generalizations of the trust region problem, Technical Report MCS-P349-0193. Argonne National Labs, Argonne, IL (1993)

    Google Scholar 

  26. More, J., Wu, Z.: Distance geometry optimization for protein structures. J. Global Optim. 15, 219–234 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nesterov, Y.: Dual extrapolation and its applications to solving variational inequalities and related problems. Math. Program. Ser. B 109, 319–344 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nesterov, Y.: Primal-dual subgradient methods for convex problems. Math. Program. Ser. B 120, 221–259 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pong, T.K., Tseng, P.: (Robust) Edge-based semidefinite programming relaxation of sensor network localization. Math. Program. 130(2), 321–358 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rockafellar, R.T.: Monotone operators and the proximal point algorithms. SIAM J. Cont. Optim. 14, 887–898 (1976)

    MathSciNet  Google Scholar 

  31. Ruan, N., Gao, D.Y.: Canonical duality approach for nonlinear dynamical systems. IMA J. Appl. Math. 79(2), 313–325 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ruan, N., Gao, D.Y., Jiao, Y.: Canonical dual least square method for solving general nonlinear systems of quadratic equations. Comput. Optim. Appl. 47, 335–347 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. So, A.M., Ye, Y.: Theory of semidefinite programming for sensor network localization. Math. Program. Ser. B 109, 367–384 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 12, 625–633 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Taskar, B., Julien, S.L., Jordan, M.I.: Structured prediction, dual extragradient and bregman projections. J. Mach. Learn. Res. 7, 1627–1653 (2006)

    MathSciNet  MATH  Google Scholar 

  36. Wang, Z., Zheng, S., Ye, Y., Boyd, S.: Further relaxations of the semidefinite programming approach to sensor network localization. SIAM J. Optim. 19, 655–673 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yamashita, N., Dan, H., Fukushima, M.: On the identification of degenerate indices in the nonlinear complementarity problem with the proximal point algorithm. Math. Program. 99, 377–397 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, J., Gao, D.Y., Yearwood, J.: A novel canonical dual computational approach for prion AGAAAAGA amyloid fibril molecular modeling. J. Theor. Biol. 284, 149–157 (2011). doi:10.1016/j.jtbi.2011.06.024

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research was supported by US Air Force Office of Scientific Research under the grants AFOSR FA9550-17-1-0151 and AOARD FOST-16-265. Numerical computation was performed by research student Mr. Chaojie Li at Federation University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Yang Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wu, C., Gao, D.Y. (2017). Canonical Primal–Dual Method for Solving Nonconvex Minimization Problems. In: Gao, D., Latorre, V., Ruan, N. (eds) Canonical Duality Theory. Advances in Mechanics and Mathematics, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-319-58017-3_11

Download citation

Publish with us

Policies and ethics