Skip to main content

Advertisement

Log in

MR spectroscopy of the breast

Spettroscopia a RM della mammella

  • Breast Radiology Senologia
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

This literature review assesses the clinical potential of proton (1H) magnetic resonance spectroscopy (MRS) of breast lesions. We here illustrate the basic principles of spectrum acquisition for volumes of interest, determined on the basis of dynamic magnetic resonance imaging (MRI) and of MRS postprocessing. We discuss the criteria for interpreting the spectrum with particular reference to the metabolic significance of the peak of total choline containing compounds at 3.2 ppm, a marker that is correlated with malignancy. We then summarise the findings obtained in lesion characterisation (with a possible gain in specificity with respect to dynamic MRI), the assessment of the effects of neoadjuvant chemotherapy and the correlation reported at high-field between the tumour tissue concentration of choline-containing compounds and the presence of lymph node metastases. Lastly, we outline the clinical use of this technique as the final phase of a complete breast MR examination after intravenous administration of paramagnetic contrast material for the dynamic study, with reference to its use by radiologists dedicated to breast imaging.

Riassunto

La presente rassegna valuta sulla base della letteratura le potenzialità cliniche della spettroscopia a RM delle lesioni mammarie con riferimento all’esperienza maturata per lo studio spettroscopico del protone (1H). Sono illustrati i principi fondamentali dell’acquisizione dello spettro su volume di interesse (determinato sulla base dello studio RM dinamico) e del postprocessing. Sono discussi i criteri interpretativi dello spettro con particolare riferimento al significato metabolico del picco dei composti contenenti colina a 3,2 ppm, marker correlato alla malignità della lesione. Sono riassunti i risultati clinici ottenuti nella caratterizzazione lesionale (con possibile guadagno in specificità rispetto all’imaging RM dinamico), nella valutazione dell’effetto della chemioterapia neoadiuvante e nella correlazione — dimostrata ad alto campo — tra concentrazione tessutale tumorale dei composti contenenti colina e presenza di metastasi linfonodali. Lo sviluppo clinico di questa tecnica come fase finale che completa l’indagine a RM mammaria con mezzo di contrasto paramagnetico è infine delineata con riferimento al suo utilizzo da parte del Radiologo dedicato alla Senologia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References/Bibliografia

  1. Koutcher JA, Goldsmith M, Damadian R (1978) NMR in cancer. A malignancy index to discriminate normal and cancerous tissue. Cancer 41:174–182

    Article  PubMed  CAS  Google Scholar 

  2. Heywang SH (1988) MRI does not replace mammography — present state of MRI of the breast without contrast agent. J Med Imaging 8:817–826

    Google Scholar 

  3. Heywang SH, Hahn D, Schmidt H et al (1986) MRI of the breast using gadolinium-DTPA. J Comput Assist Tomogr 10:199–204

    Article  PubMed  CAS  Google Scholar 

  4. Womveg TW, Buscema M, Kauczor H et al (2003) Improved artificial neural networks in prediction of malignancy of lesions in contrast-enhanced MR-mammography. Med Phys 30:2350–2359

    Article  Google Scholar 

  5. Kuhl CK, Schild HH, Morakkabati N (2005) Dynamic bilateral contrast-enhanced MR imaging of the breast: trade-off between spatial and temporal resolution. Radiology 236:789–800

    Article  PubMed  Google Scholar 

  6. Podo F (1999) Tumour phospholipid metabolism. NMR Biomed 12:413–439

    Article  PubMed  CAS  Google Scholar 

  7. Payne GS, Dowsett M, Leach MO (1994) Hormone-dependent metabolic changes in the normal breast monitored non-invasively by 31P magnetic resonance (MR) spectroscopy. Breast 3:20–23

    Article  Google Scholar 

  8. Park JM, Park JH (2001) Human in-vivo 31P MR spectroscopy of benign and malignant breast tumors. Korean J Radiol 2:80–86

    Article  PubMed  CAS  Google Scholar 

  9. Gribbestad IS, Singstad TE, Nilsen G et al (1998) In vivo 1H MRS of normal breast and breast tumors using a dedicated double breast coil. J Magn Reson Imaging 8:1191–1197

    Article  PubMed  CAS  Google Scholar 

  10. Roebuck JR, Cecil KM, Schnall MD, Lenkinski RE (1998) Human breast lesions: characterization with proton MR spectroscopy. Radiology 209:269–275

    PubMed  CAS  Google Scholar 

  11. Kvistad KA, Bakken IJ, Gribbestad IS et al (1999) Characterization of neoplastic and normal human breast tissues with in vivo 1H MR spectroscopy. J Magn Reson Imaging 10:159–164

    Article  PubMed  CAS  Google Scholar 

  12. Yeung DK, Yang WT, Tse GM (2001) Human breast lesions: characterization with contrast-enhanced in vivo proton MR spectroscopy—Initial results. Radiology 220:40–46

    PubMed  CAS  Google Scholar 

  13. Jagannathan NR, Kumar M, Seenu V et al (2001) GK. Evaluation of total choline from in-vivo volume localized proton MR spectroscopy and its response to neoadjuvant chemotherapy in locally advanced breast cancer. Br J Cancer 84:1016–1022

    Article  PubMed  CAS  Google Scholar 

  14. Cecil KM, Schnall MD, Siegelman ES, Lenkinski RE (2001) The evaluation of human breast lesions with magnetic resonance imaging and proton magnetic resonance spectroscopy. Breast Cancer Res Treat 68:45–54

    Article  PubMed  CAS  Google Scholar 

  15. Yeung DK, Yang WT, Tse GM (2002) Breast cancer: in vivo proton MR spectroscopy in the characterization of histopathologic subtypes and preliminary observations in axillary node metastases. Radiology 225:190–197

    Article  PubMed  Google Scholar 

  16. Kim JK, Park SH, Lee HM et al (2003) In vivo 1H-MRS evaluation of malignant and benign breast diseases. Breast 12:179–182

    Article  PubMed  Google Scholar 

  17. Huang W, Fisher PR, Dulaimy K et al (2004) Detection of breast malignancy: diagnostic MR protocol for improved specificity. Radiology 232:585–591

    Article  PubMed  Google Scholar 

  18. Stanwell P, Gluch L, Clark D et al (2005) Specificity of choline metabolites for in vivo diagnosis of breast cancer using 1H MRS at 1.5 T. Eur Radiol 15:1037–1043

    Article  PubMed  Google Scholar 

  19. Meisamy S, Bolan PJ, Baker EH et al (2005) Adding in vivo quantitative 1H MR spectroscopy to improve diagnostic accuracy of breast MR imaging: preliminary results of observer performance study at 4.0 T. Radiology 236:465–475

    Article  PubMed  Google Scholar 

  20. Fausto A, Sardanelli F (2005) Value of proton spectroscopy added to a highly spatially resolved Gd-enhanced MR study of the breast. Proceedings 91th RSNA, p 177

  21. Bartella L, Morris EA, Dershaw DD et al (2006) Porton MR spectroscopy with choline peak as malignancy marker improves positive predictive value for breast cancer diagnosis: preliminary study. Radiology 239:686–692

    Article  PubMed  Google Scholar 

  22. Jacobs MA, Barker PB, Argani P et al (2005) Combined dynamic contrast enhanced breast MR and proton spectroscopic imaging: a feasibility study. J Magn Reson Imaging 21:23–28

    Article  PubMed  Google Scholar 

  23. Salibi N, Brown MA (1998) Clinical MR spectroscopy. First principles. Wiley-Liss, New York

    Google Scholar 

  24. Fausto A, Iozzelli A, Steffano GB et al (2004) Breast MR: single-voxel proton spectroscopy added to a highly spatially resolved Gd-enhanced study (first results). Eur Radiol 14[Suppl 2]:314

    Google Scholar 

  25. Klomp DW, Veltman J, Boetes C et al (2005) Robust quantification of choline compounds in the breast at 1.5T using prior knowledge and optimized detection methods. Proceedings Intl Soc Mag Reson Med 1854

  26. Ruiz-Cabello J, Cohen JS (1992) Phospholipid metabolites as indicators of cancer cell function. NMR Biomed 5:226–233

    PubMed  CAS  Google Scholar 

  27. Eliyahu G, Seger D, Kreizmann T, Degani H (2005) High phosphocholine in breast cancer: metabolic-molecular elucidation. Proceedings Intl Soc Mag Reson Med 13

  28. Glunde K, Jie C, Bhujwalla Z (2004) Molecular cause of aberrant choline phospholipid metabolism in breast cancer. Cancer Res 64:4270–4276

    Article  PubMed  CAS  Google Scholar 

  29. Katz-Brull R, Lavin PT, Lenkinski RE (2002) Clinical utility of proton magnetic resonance spectroscopy in characterizing breast lesions. J Natl Cancer Inst 94:1197–1203

    PubMed  CAS  Google Scholar 

  30. McIntosh A, Bolan PJ, Meisamy S et al (2005) Using quantitative choline measurements to predict axillary node status in human breast cancer, in vivo. Proceedings Intl Soc Mag Reson Med 132

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Sardanelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sardanelli, F., Fausto, A. & Podo, F. MR spectroscopy of the breast. Radiol med 113, 56–64 (2008). https://doi.org/10.1007/s11547-008-0228-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-008-0228-y

Keywords

Parole chiave

Navigation