Skip to main content

Abstract

Although there is no single standard protocol for breast MRI acquisition, high quality breast MRI generally requires use of a dedicated breast MRI coil and adequate (≥ 1.5 T) magnetic field strength. Currently, breast MRI requires gadolinium contrast agent administration for cancer detection and a dynamic acquisition (dynamic contrast enhanced, or DCE, MRI) using a method that allows for homogenous fat suppression. In order to maximize sensitivity and sensitivity, MRI protocols must balance spatial and temporal resolution so that important morphologic and kinetic enhancement features can be readily identified. In addition, it is important to develop an approach that attains consistency, addresses technical challenges, and minimizes artifacts. Finally, advanced approaches, such as use of higher magnetic field strength (e.g. 3 T) scanners, diffusion weighted imaging, and MR spectroscopy present unique opportunities and challenges that must be considered and addressed prior to adoption in routine clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Damadian R. Tumor detection by nuclear magnetic resonance. Science (New York, NY). 1971;171(3976):1151–3. PubMed PMID: 5544870. Epub 1971/03/19. eng

    Article  CAS  Google Scholar 

  2. Bovee WM, Getreuer KW, Smidt J, Lindeman J. Nuclear magnetic resonance and detection of human breast tumor. J Natl Cancer Inst. 1978;61(1):53–5. PubMed PMID: 276638. Epub 1978/07/01. eng

    Article  CAS  PubMed  Google Scholar 

  3. Kaiser WA, Zeitler E. MR imaging of the breast: fast imaging sequences with and without Gd-DTPA. Preliminary observations. Radiology. 1989;170(3 Pt 1):681–6. PubMed PMID: 2916021. Epub 1989/03/01. eng

    Article  CAS  PubMed  Google Scholar 

  4. D’Orsi CJ, Sickles EA, Mendelson EB, Morris EA, et al. ACR BI-RADS® Atlas, breast imaging reporting and data system. Reston, VA, American College of Radiology; 2013.

    Google Scholar 

  5. Nnewihe AN, Grafendorfer T, Daniel BL, Calderon P, Alley MT, Robb F, et al. Custom-fitted 16-channel bilateral breast coil for bidirectional parallel imaging. Magn Reson Med. 2011;66(1):281–9. PubMed PMID: 21287593. Pubmed Central PMCID: 3128917. Epub 2011/02/03. eng

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ladd ME. High-field-strength magnetic resonance: potential and limits. Top Magn Reson Imaging. 2007;18(2):139–52. PubMed PMID: 17621228

    Article  PubMed  Google Scholar 

  7. Rausch DR, Hendrick RE. How to optimize clinical breast MR imaging practices and techniques on Your 1.5-T system. Radiographics. 2006;26(5):1469–84. PubMed PMID: 16973776. Epub 2006/09/16. eng

    Article  PubMed  Google Scholar 

  8. Hendrick RE, Haacke EM. Basic physics of MR contrast agents and maximization of image contrast. J Magn Reson Imaging. 1993;3(1):137–48. PubMed PMID: 8428081. Epub 1993/01/01. eng

    Article  CAS  PubMed  Google Scholar 

  9. The American College of Radiology Breast Magnetic Resonance Imaging (MRI) Accreditation Program Requirements [updated 07/31/2015; cited 2015 12/14/2015] Available from: http://www.acr.org/~/media/ACR/Documents/Accreditation/BreastMRI/Requirements.pdf.

  10. Hendrick RE. Breast MRI: fundamentals and technical aspects. Springer Science + Business Media, New York, LLC.; 2008.

    Google Scholar 

  11. Kuhl CK. Current status of breast MR imaging. Part 2. Clinical applications. Radiology. 2007;244(3):672–91. PubMed PMID: 17709824

    Article  PubMed  Google Scholar 

  12. Wang LC, DeMartini WB, Partridge SC, Peacock S, Lehman CD. MRI-detected suspicious breast lesions: predictive values of kinetic features measured by computer-aided evaluation. AJR Am J Roentgenol. 2009;193(3):826–31. PubMed PMID: 19696298. Epub 2009/08/22. eng

    Article  PubMed  Google Scholar 

  13. Middleton MS. MR evaluation of breast implants. Radiol Clin North Am. 2014;52(3):591–608. PubMed PMID: 24792659

    Article  PubMed  Google Scholar 

  14. Kuhl CK, Schild HH, Morakkabati N. Dynamic bilateral contrast-enhanced MR imaging of the breast: trade-off between spatial and temporal resolution. Radiology. 2005;236(3):789–800. PubMed PMID: 16118161

    Article  PubMed  Google Scholar 

  15. Gutierrez RL, Strigel RM, Partridge SC, DeMartini WB, Eby PR, Stone KM, et al. Dynamic breast MRI: does lower temporal resolution negatively affect clinical kinetic analysis? AJR Am J Roentgenol. 2012;199(3):703–8. PubMed PMID: 22915415

    Article  PubMed  Google Scholar 

  16. Friedman PD, Swaminathan SV, Smith R. SENSE imaging of the breast. AJR Am J Roentgenol. 2005;184(2):448–51. PubMed PMID: 15671362

    Article  PubMed  Google Scholar 

  17. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med. 2002;47(6):1202–10. PubMed PMID: 12111967

    Article  PubMed  Google Scholar 

  18. Griswold MA, Jakob PM, Nittka M, Goldfarb JW, Haase A. Partially parallel imaging with localized sensitivities (PILS). Magn Reson Med. 2000;44(4):602–9. PubMed PMID: 11025516

    Article  CAS  PubMed  Google Scholar 

  19. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42(5):952–62. PubMed PMID: 10542355

    Article  CAS  PubMed  Google Scholar 

  20. Herrmann KH, Baltzer PA, Dietzel M, Krumbein I, Geppert C, Kaiser WA, et al. Resolving arterial phase and temporal enhancement characteristics in DCE MRM at high spatial resolution with TWIST acquisition. J Magn Reson Imaging. 2011;34(4):973–82. PubMed PMID: 21769981

    Article  PubMed  Google Scholar 

  21. Le Y, Kipfer H, Majidi S, Holz S, Dale B, Geppert C, et al. Application of time-resolved angiography with stochastic trajectories (TWIST)-Dixon in dynamic contrast-enhanced (DCE) breast MRI. J Magn Reson Imaging. 2013;38(5):1033–42. PubMed PMID: 24038452

    Article  PubMed  Google Scholar 

  22. Saranathan M, Rettmann DW, Hargreaves BA, Clarke SE, Vasanawala SS. DIfferential Subsampling with Cartesian Ordering (DISCO): a high spatio-temporal resolution Dixon imaging sequence for multiphasic contrast enhanced abdominal imaging. J Magn Reson Imaging. 2012;35(6):1484–92. PubMed PMID: 22334505. Pubmed Central PMCID: 3354015

    Article  PubMed  PubMed Central  Google Scholar 

  23. Saranathan M, Rettmann DW, BA H, JA L, BL D. Variable spatiotemporal resolution three-dimensional dixon sequence for rapid dynamic contrast-enhanced breast MRI. J Magn Reson Imaging. 2013;40(6):1392–9. PubMed PMID: 24227703

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tudorica LA, Oh KY, Roy N, Kettler MD, Chen Y, Hemmingson SL, et al. A feasible high spatiotemporal resolution breast DCE-MRI protocol for clinical settings. Magn Reson Imaging. 2012;30(9):1257–67. PubMed PMID: 22770687. Pubmed Central PMCID: 3466402

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pinker K, Grabner G, Bogner W, Gruber S, Szomolanyi P, Trattnig S, et al. A combined high temporal and high spatial resolution 3 Tesla MR imaging protocol for the assessment of breast lesions: initial results. Invest Radiol. 2009;44(9):553–8. PubMed PMID: 19652611

    Article  PubMed  Google Scholar 

  26. American College of Radiology Practice Parameter for the Performance of Contrast-Enhanced MRI of the Breast [updated 10/01/2014, cited 12/14/2015]. Available from: http://www.acr.org/~/media/2a0eb28eb59041e2825179afb72ef624.pdf.

  27. Dixon WT. Simple proton spectroscopic imaging. Radiology 1984;153(1):189–194. PubMed PMID: 6089263.

    Google Scholar 

  28. Reeder SB, Pineda AR, Wen Z, Shimakawa A, Yu H, Brittain JH, et al. Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): application with fast spin-echo imaging. Magn Reson Med. 2005;54(3):636–44. PubMed PMID: 16092103

    Article  PubMed  Google Scholar 

  29. Glover GH, Schneider E. Three-point Dixon technique for true water/fat decomposition with B0 inhomogeneity correction. Magn Reson Med. 1991;18(2):371–83. PubMed PMID: 2046518

    Article  CAS  PubMed  Google Scholar 

  30. Yitta S, Joe BN, Wisner DJ, Price ER, Hylton NM. Recognizing artifacts and optimizing breast MRI at 1.5 and 3 T. AJR Am J Roentgenol. 2013;200(6):W673–82. PubMed PMID: 23701101

    Article  PubMed  Google Scholar 

  31. Harvey JA, Hendrick RE, Coll JM, Nicholson BT, Burkholder BT, Cohen MA. Breast MR imaging artifacts: how to recognize and fix them. Radiographics. 2007;27(Suppl 1):S131–45. PubMed PMID: 18180223

    Article  PubMed  Google Scholar 

  32. van der Velden TA, Schmitz AM, Gilhuijs KG, Veldhuis WB, Luijten PR, Boer VO, et al. Fat suppression techniques for obtaining high resolution dynamic contrast enhanced bilateral breast MR images at 7 tesla. Magn Reson Imaging. 2016;34(4):462–8. doi:10.1016/j.mri.2015.12.012. Epub 2015/12/ 17.

  33. Schmitz AM, Veldhuis WB, Menke-Pluijmers MB, van der Kemp WJ, van der Velden TA, Kock MC, et al. Multiparametric MRI with dynamic contrast enhancement, diffusion-weighted imaging, and 31-phosphorus spectroscopy at 7 T for characterization of breast cancer. Invest Radiol. 2015;50(11):766–71. PubMed PMID: 26135017

    Article  CAS  PubMed  Google Scholar 

  34. Rahbar H, Partridge SC, DeMartini WB, Thursten B, Lehman CD. Clinical and technical considerations for high quality breast MRI at 3 Tesla. J Magn Reson Imaging. 2013;37(4):778–90. PubMed PMID: 23526757

    Article  PubMed  Google Scholar 

  35. Kuhl CK, Jost P, Morakkabati N, Zivanovic O, Schild HH, Gieseke J. Contrast-enhanced MR imaging of the breast at 3.0 and 1.5 T in the same patients: initial experience. Radiology. 2006;239(3):666–76. PubMed PMID: 16549623

    Article  PubMed  Google Scholar 

  36. Rahbar H, DeMartini WB, Lee AY, Partridge SC, Peacock S, Lehman CD. Accuracy of 3 T versus 1.5 T breast MRI for pre-operative assessment of extent of disease in newly diagnosed DCIS. Eur J Radiol. 2015;84(4):611–6. PubMed PMID: 25604909. Pubmed Central PMCID: 4348176

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nelles M, Konig RS, Gieseke J, Guerand-van Battum MM, Kukuk GM, Schild HH, et al. Dual-source parallel RF transmission for clinical MR imaging of the spine at 3.0 T: intraindividual comparison with conventional single-source transmission. Radiology. 2010;257(3):743–53. PubMed PMID: 20858848. Epub 2010/09/23. eng

    Article  PubMed  Google Scholar 

  38. Willinek WA, Gieseke J, Kukuk GM, Nelles M, Konig R, Morakkabati-Spitz N, et al. Dual-source parallel radiofrequency excitation body MR imaging compared with standard MR imaging at 3.0 T: initial clinical experience. Radiology. 2010;256(3):966–75. PubMed PMID: 20720078. Epub 2010/08/20. eng

    Article  PubMed  Google Scholar 

  39. Rakow-Penner R, Hargreaves B, Glover GH, Daniel B. Breast MRI at 3 T. Appl Radiol. 2009;March:6–13.

    Google Scholar 

  40. Kuhl CK, Kooijman H, Gieseke J, Schild HH. Effect of B1 inhomogeneity on breast MR imaging at 3.0 T. Radiology. 2007;244(3):929–30. PubMed PMID: 17709843

    Article  PubMed  Google Scholar 

  41. Azlan CA, Di Giovanni P, Ahearn TS, Semple SI, Gilbert FJ, Redpath TW. B1 transmission-field inhomogeneity and enhancement ratio errors in dynamic contrast-enhanced MRI (DCE-MRI) of the breast at 3 T. J Magn Reson Imaging. 2010;31(1):234–9. PubMed PMID: 20027594. Epub 2009/12/23. eng

    Article  PubMed  Google Scholar 

  42. Rahbar H, Partridge SC, Demartini WB, Gutierrez RL, Parsian S, Lehman CD. Improved B(1) homogeneity of 3 tesla breast MRI using dual-source parallel radiofrequency excitation. J Magn Reson Imaging. 2012;35(5):1222–6. PubMed PMID: 22282269. Epub 2012/01/28. Eng

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rahbar H, Partridge SC. Multiparametric MR imaging of breast cancer. Magn Reson Imaging Clin N Am. 2016;24(1):223–38. PubMed PMID: 26613883. Pubmed Central PMCID: 4672390

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Rahbar MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rahbar, H., Strigel, R.M., Partridge, S.C. (2017). Breast MRI Technique. In: Heller, S., Moy, L. (eds) Breast Oncology: Techniques, Indications, and Interpretation. Springer, Cham. https://doi.org/10.1007/978-3-319-42563-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42563-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42561-0

  • Online ISBN: 978-3-319-42563-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics