Skip to main content
Log in

A Model for Carrier-Mediated Biological Signal Transduction Based on Equilibrium Ligand Binding Theory

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Different variants of a mathematical model for carrier-mediated signal transduction are introduced with focus on the odor dose–electrophysiological response curve of insect olfaction. The latter offers a unique opportunity to observe experimentally the effect of an alteration in the carrier molecule composition on the signal molecule-dependent response curve. Our work highlights the role of involved carrier molecules, which have largely been ignored in mathematical models for response curves in the past. The resulting model explains how the involvement of more than one carrier molecule in signal molecule transport can cause dose–response curves as observed in experiments, without the need of more than one receptor per neuron. In particular, the model has the following features: (1) An extended sensitivity range of neuronal response is implemented by a system consisting of only one receptor but several carrier molecules with different affinities for the signal molecule. (2) Given that the sensitivity range is extended by the involvement of different carrier molecules, the model implies that a strong difference in the expression levels of the carrier molecules is absolutely essential for wide range responses. (3) Complex changes in dose–response curves which can be observed when the expression levels of carrier molecules are altered experimentally can be explained by interactions between different carrier molecules. The principles we demonstrate here for electrophysiological responses can also be applied to any other carrier-mediated biological signal transduction process. The presented concept provides a framework for modeling and statistical analysis of signal transduction processes if sufficient information on the underlying biology is available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akera T, Cheng VJK (1977) A simple method for the determination of affinity and binding site activity in receptor binding studies. Biochim Biophys Acta-Biomembr 470(3):412–423

    Article  Google Scholar 

  • Balakrishnan K, Dippel S, Wimmer E, Schütz S (2015) Odor binding proteins in the olfaction of the flour beetle Tribolium castaneum. Mitt. Dtsch.Ges.allg.angew.Ent. 20 (in press)

  • Ben-Naim A (2001) Cooperativity and regulation in biochemical processes. Springer, Berlin

    Book  Google Scholar 

  • Benton R, Sachse S, Michnick SW, Vosshall LB (2006) Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol 4(2):e20

    Article  Google Scholar 

  • Benton R, Vornice KS, Vosshall LB (2007) An essential role for a CD-36 related receptor in pheromone detection in Drosophila. Nature 450:289–293

    Article  Google Scholar 

  • Biessmann H, Andronopoulou E, Biessmann MR, Douris V, Dimitratos SD, Eliopoulos E, Guerin PM, Iatrou K, Justice RW, Kröber T, Marinotti O, Tsitoura P, Woods DF, Walter MF (2010) The Anopheles gambiae odorant binding protein 1 (AgamOBP1) mediates indole recognition in the antennae of female mosquitoes. PLoS One 5(3):e9471

    Article  Google Scholar 

  • Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65(1):175–187

    Article  Google Scholar 

  • Byers JA (2013) Modeling and regression analysis of semiochemical dose-response curves of insect antennal reception and behavior. J Chem Ecol 39(8):1081–1089

    Article  Google Scholar 

  • Byers JA (2014) Response to Martini and Habeck: Semiochemical dose-response curves fit by kinetic formation functions. J Chem Ecol 40(11–12):1165–1166

    Article  Google Scholar 

  • Cantor CR, Schimmel PR (1980) Biophysical chemistry. Part III. The behavior of biological macromolecules, W. H, Freeman, New York

    Google Scholar 

  • Clyne PJ, Warr CG, Freeman MR, Lessing D, Kim J, Carlson JR (1999) A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22(2):327–338

    Article  Google Scholar 

  • De Bruyne M, Baker TC (2008) Odor detection in insects: volatile codes. J Chem Ecol 34(7):882–897

    Article  Google Scholar 

  • Dippel S, Oberhofer G, Kahnt J, Gerischer L, Opitz L, Schachtner J, Stanke M, Schütz S, Wimmer E, Angeli S (2014) Tissue-specific transcriptomics, chromosomal localization, and phylogeny of chemosensory and odorant binding proteins from the red flour beetle Tribolium castaneum reveal subgroup specificities for olfaction or more general functions. BMC Genomics 15(1):1141

    Article  Google Scholar 

  • Engsontia P, Sanderson AP, Cobb M, Walden KKO, Robertson HM, Brown S (2008) The red flour beetle’s large nose: an expanded odorant receptor gene family in Tribolium castaneum. Insect Biochem Mol Biol 38(4):387–397

    Article  Google Scholar 

  • Forstner M, Breer H, Krieger J (2009) A receptor and binding protein interplay in the detection of a distinct pheromone component in the silkmoth Antheraea polyphemus. Int J Biol Sci 5(7):745–757

    Article  Google Scholar 

  • Getz WM, Lánsky P (2001) Receptor dissociation constants and the information entropy of membranes coding ligand concentration. Chem Senses 26(2):95–104

    Article  Google Scholar 

  • Hallem EA, Ho MG, Carlson JR (2004) The molecular basis of odor coding in the Drosophila antenna. Cell 117(7):965–979

    Article  Google Scholar 

  • Harada E, Nakagawa J, Asano T, Taoka M, Sorimachi H, Ito Y, Aigaki T, Matsuo T (2012) Functional evolution of duplicated odorant-binding protein genes, Obp57d and Obp57e Drosophila. PloS One 7(1):e29710

    Article  Google Scholar 

  • Hasselbalch K (1916) Die Berechnung der Wasserstoffzahl des Blutes aus der freien und gebundenen Kohlensäure desselben, und die Sauerstoffbindung des Blutes als Funktion der Wasserstoffzahl. Julius Springer, Berlin

    Google Scholar 

  • He P, Zhang J, Liu N, Zhang Y, Yang K, Dong S (2011) Distinct expression profiles and different functions of odorant binding proteins in Nilaparvata lugens Stål. PloS One 6(12):e28921

    Article  Google Scholar 

  • Henderson LJ (1913) The fitness of the environment. Macmillan, New York

    Google Scholar 

  • Hill TL (1985) Cooperativity theory in biochemistry: steady-state and equilibrium systems. Springer, New York

  • Ignatious Raja JS, Katanayeva N, Katanaev VL, Galizia CG (2014) Role of Go/i subgroup of G proteins in olfactory signaling of Drosophila melanogaster. Eur J Neurosci 39(8):1245–1255

    Article  Google Scholar 

  • Jin X, Ha TS, Smith DP (2008) SNMP is a signaling component required for pheromone sensitivity in Drosophila. PNAS 105:10996–11004

    Article  Google Scholar 

  • Kaissling KE (2009) Olfactory perireceptor and receptor events in moths: a kinetic model revised. J Comp Physiol A 195(10):895–922

    Article  Google Scholar 

  • Krauss G (2006) Biochemistry of signal transduction and regulation. Wiley, New York

    Google Scholar 

  • Krieger MJB, Ross KG (2005) Molecular evolutionary analyses of the odorant-binding protein gene Gp-9 in fire ants and other Solenopsis species. Mol Biol Evol 22(10):2090–2103

    Article  Google Scholar 

  • Lambert DG (2004) Drugs and receptors. Contin Educ Anaesth Crit Pain 4(6):181–184

    Article  Google Scholar 

  • Leal WS (2013) Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol 58:373–391

    Article  Google Scholar 

  • Li J, Lehmann S, Weißbecker B, Naharros IO, Schütz S, Joop G, Wimmer EA (2013) Odoriferous defensive stink gland transcriptome to identify novel genes necessary for quinone synthesis in the red flour beetle Tribolium castaneum. PloS Genet 9(7):e1003596

    Article  Google Scholar 

  • Lummis SCR, McGonigle I, Ashby JA, Dougherty DA (2011) Two amino acid residues contribute to a cation-\(\pi \) binding interaction in the binding site of an insect GABA receptor. J Neurosci 31(34):12371–12376

    Article  Google Scholar 

  • Lánskỳ P, Getz WM (2001) Receptor heterogeneity and its effect on sensitivity and coding range in olfactory sensory neurons. Bull Math Biol 63(5):885–908

    Article  MATH  Google Scholar 

  • Martini JWR, Habeck M (2014) Kinetics or equilibrium? A commentary on a recent simulation study of semiochemical dose-response curves of insect olfactory sensing. J Chem Ecol 40(11–12):1163–1164

    Article  Google Scholar 

  • Martini JWR, Habeck M (2015) Comparison of the kinetics of different Markov models for ligand binding under varying conditions. J Chem Phys 142(9):094104

    Article  Google Scholar 

  • Martini JWR, Habeck M, Schlather M (2014) A derivation of the Grand Canonical Partition Function for systems with a finite number of binding sites using a Markov chain model for the dynamics of single molecules. J Math Chem 52(3):665–674

    Article  MathSciNet  MATH  Google Scholar 

  • Martini JWR, Schlather M, Ullmann GM (2013) On the interaction of two different types of ligands binding to the same molecule. Part I: basics and the transfer of the decoupled sites representation to systems with n and one binding sites. J Math Chem 51(2):672–695

    Article  MathSciNet  MATH  Google Scholar 

  • Martini JWR, Schlather M, Ullmann GM (2013) On the interaction of different types of ligands binding to the same molecule. Part II: systems with n to 2 and n to 3 binding sites. J Math Chem 51(2):696–714

    Article  MathSciNet  MATH  Google Scholar 

  • Martini JWR, Schlather M, Ullmann GM (2013) The meaning of the decoupled sites representation in terms of statistical mechanics and stochastics MATCH. Commun Math Comput Chem 70(3):829–850

    MathSciNet  MATH  Google Scholar 

  • Martini JWR, Ullmann GM (2013) A mathematical view on the decoupled sites representation. J Math Biol 66(3):477–503

    Article  MathSciNet  MATH  Google Scholar 

  • Martini JWR, Luis D, Michael H (2015) Cooerative binding: a multiple personality. J Math Biol 72(7):1747–1774

    Article  MATH  Google Scholar 

  • Pelletier J, Guidolin A, Syed Z, Cornel AJ, Leal WS (2010) Knockdown of a mosquito odorant-binding protein involved in the sensitive detection of oviposition attractants. J Chem Ecol 36(3):245–248

    Article  Google Scholar 

  • Pliska V (1999) Partial agonism: mechanisms based on ligand-receptor interactions and on stimulus-response coupling. J Recept Signal Transduct 19:597–629

    Article  Google Scholar 

  • Qiao H, He X, Schymura D, Ban L, Field L, Dani FR, Michelucci E, Caputo B, Della Torre A, Iatrou K, Zhou JJ, Krieger J, Pelosi P (2011) Cooperative interactions between odorant-binding proteins of Anopheles gambiae. Cell Mol Life Sci 68(10):1799–1813

    Article  Google Scholar 

  • Ritz C (2010) Toward a unified approach to dose-response modeling in ecotoxicology. Environ Toxicol Chem 29(1):220–229

    Article  MathSciNet  Google Scholar 

  • Ruiz-Herrero T, Estrada J, Guantes R, Miguez DG (2013) A tunable coarse-grained model for ligand-receptor interaction. PloS Comput Biol 9(11):e1003274

    Article  Google Scholar 

  • Rützler M, Zwiebel LJ (2005) Molecular biology of insect olfaction: recent progress and conceptual models. J Comp Physiol A 191(9):777–790

    Article  Google Scholar 

  • Sachse S, Krieger J (2011) Olfaction in insects. e-Neuroforum 2(3):49–60

    Article  Google Scholar 

  • Schellman JA (1975) Macromolecular binding. Biopolymers 14:999–1018

    Article  Google Scholar 

  • Schultze A, Pregitzer P, Walter MF, Woods DF, Marinotti O, Breer H, Krieger J (2013) The co-expression pattern of odorant binding proteins and olfactory receptors identify distinct Trichoid sensilla on the antenna of the malaria mosquito Anopheles gambiae. PloS One 8(7):e69412

    Article  Google Scholar 

  • Schütz S (2001) Der Einfluß  verletzungsinduzierter Emissionen der Kartoffelpflanze S. tuberosum auf die geruchliche Wirtspflanzenfindung und-auswahl durch den Kartoffelkäfer L. decemlineata: Ein Biosensor für die Diagnose von Pflanzenschäden. Wissenschaftlicher Fachverlag Dr. Fleck, Wetzlar

  • Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature 293:161–163

    Article  Google Scholar 

  • von Fragstein M, Holighaus G, Schütz S, Tscharntke T (2013) Weak defence in a tritrophic system: olfactory response to salicylaldehyde reflects prey specialization of potter wasps. Chemoecology 23(3):181–190

    Article  Google Scholar 

  • Vosshall LB, Amrein H, Morozov PS, Rzhetsky A, Axel R (1999) A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96(5):725–736

    Article  Google Scholar 

  • Wicher D, Schäfer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH, Hansson BS (2008) Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452(7190):1007–1011

    Article  Google Scholar 

  • Wyman J, Gill SJ (1990) Binding and linkage: functional chemistry of biological macromolecules. University Science Books, Mill Valley

    Google Scholar 

  • Xu P, Atkinson R, Jones DNM, Smith DP (2005) Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron 45(2):193–200

    Article  Google Scholar 

Download references

Acknowledgments

J.W.R.M. would like to thank Maria Emilia Barreyro for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes W. R. Martini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martini, J.W.R., Schlather, M. & Schütz, S. A Model for Carrier-Mediated Biological Signal Transduction Based on Equilibrium Ligand Binding Theory. Bull Math Biol 78, 1039–1057 (2016). https://doi.org/10.1007/s11538-016-0173-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-016-0173-1

Keywords

Navigation