Skip to main content

Odor and Pheromone Molecules, Receptors, and Behavioral Responses

  • Chapter
  • First Online:
The Olfactory System

Abstract

Knowledge about chemosensory signals, receptors, olfactory neural network, and behavioral outputs has grown rapidly. Thus, the molecular logic that mediates recognition and discrimination of chemosensory signals has been revealed. Here, I first summarize the current understanding of mammalian olfaction, from the odorant or pheromone, to the receptor, and finally to the behavioral output. I then discuss important questions to be solved in the future and give some insights. Specifically, how should we categorize volatile compounds that are received by olfactory systems in animals? What should be the next focus of research in the field of olfactory receptors? How can we connect a receptor response to a cognate, biologically meaningful odorant or pheromone with the respective behavioral or physiological output at the level of neural circuitry?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abuin L, Bargeton B, Ulbrich MH, Isacoff EY, Kellenberger S, Benton R (2011) Functional architecture of olfactory ionotropic glutamate receptors. Neuron 69:44–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ai M, Min S, Grosjean Y, Leblanc C, Bell R, Benton R, Suh GS (2010) Acid sensing by the Drosophila olfactory system. Nature (Lond) 468:691–695

    Article  CAS  Google Scholar 

  • Amoore JE (1963) Stereochemical theory of olfaction. Nature (Lond) 198:271–272

    Article  CAS  Google Scholar 

  • Bautze V, Bar R, Fissler B, Trapp M, Schmidt D, Beifuss U, Bufe B, Zufall F, Breer H, Strotmann J (2012) Mammalian-specific OR37 receptors are differentially activated by distinct odorous fatty aldehydes. Chem Senses 37:479–493

    Article  CAS  PubMed  Google Scholar 

  • Benton R, Sachse S, Michnick SW, Vosshall LB (2006) Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol 4:e20

    Article  PubMed Central  PubMed  Google Scholar 

  • Brechbuhl J, Moine F, Klaey M, Nenniger-Tosato M, Hurni N, Sporkert F, Giroud C, Broillet MC (2013) Mouse alarm pheromone shares structural similarity with predator scents. Proc Natl Acad Sci USA 110:4762–4767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187

    Article  CAS  PubMed  Google Scholar 

  • Caron SJ, Ruta V, Abbott LF, Axel R (2013) Random convergence of olfactory inputs in the Drosophila mushroom body. Nature (Lond) 497:113–117

    Article  CAS  Google Scholar 

  • Colby DR, Vandenberg JG (1974) Regulatory effects of urinary pheromones on puberty in the mouse. Biol Reprod 11:268–279

    Article  CAS  PubMed  Google Scholar 

  • Coureaud G, Moncomble AS, Montigny D, Dewas M, Perrier G, Schaal B (2006) A pheromone that rapidly promotes learning in the newborn. Curr Biol 16:1956–1961

    Article  CAS  PubMed  Google Scholar 

  • Datta SR, Vasconcelos ML, Ruta V, Luo S, Wong A, Demir E, Flores J, Balonze K, Dickson BJ, Axel R (2008) The Drosophila pheromone cVA activates a sexually dimorphic neural circuit. Nature (Lond) 452:473–477

    Article  CAS  Google Scholar 

  • Dewan A, Pacifico R, Zhan R, Rinberg D, Bozza T (2013) Non-redundant coding of aversive odours in the main olfactory pathway. Nature (Lond) 497:486–489

    Article  CAS  Google Scholar 

  • Dey S, Matsunami H (2011) Calreticulin chaperones regulate functional expression of vomeronasal type 2 pheromone receptors. Proc Natl Acad Sci USA 108:16651–16656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ditzen M, Pellegrino M, Vosshall LB (2008) Insect odorant receptors are molecular targets of the insect repellent DEET. Science 319:1838–1842

    Article  CAS  PubMed  Google Scholar 

  • Duan X, Block E, Li Z, Connelly T, Zhang J, Huang Z, Su X, Pan Y, Wu L, Chi Q et al (2012) Crucial role of copper in detection of metal-coordinating odorants. Proc Natl Acad Sci USA 109:3492–3497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dulac C, Torello AT (2003) Molecular detection of pheromone signals in mammals: from genes to behaviour. Nat Rev Neurosci 4:551–562

    Article  CAS  PubMed  Google Scholar 

  • Ejima A, Smith BP, Lucas C, van der Goes van Naters W, Miller CJ, Carlson JR, Levine JD, Griffith LC (2007) Generalization of courtship learning in Drosophila is mediated by cis-vaccenyl acetate. Curr Biol 17:599–605

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ferrero DM, Wacker D, Roque MA, Baldwin MW, Stevens RC, Liberles SD (2012) Agonists for 13 trace amine-associated receptors provide insight into the molecular basis of odor selectivity. ACS Chem Biol 7:1184–1189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grosjean Y, Rytz R, Farine JP, Abuin L, Cortot J, Jefferis GS, Benton R (2011) An olfactory receptor for food-derived odours promotes male courtship in Drosophila. Nature (Lond) 478:236–240

    Article  CAS  Google Scholar 

  • Haga S, Hattori T, Sato T, Sato K, Matsuda S, Kobayakawa R, Sakano H, Yoshihara Y, Kikusui T, Touhara K (2010) The male mouse pheromone ESP1 enhances female sexual receptive behaviour through a specific vomeronasal receptor. Nature (Lond) 466:118–122

    Article  CAS  Google Scholar 

  • Isogai Y, Si S, Pont-Lezica L, Tan T, Kapoor V, Murthy VN, Dulac C (2011) Molecular organization of vomeronasal chemoreception. Nature (Lond) 478:241–245

    Article  CAS  Google Scholar 

  • Jones WD, Cayirlioglu P, Kadow IG, Vosshall LB (2007) Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature (Lond) 445:86–90

    Article  CAS  Google Scholar 

  • Jones PL, Pask GM, Rinker DC, Zwiebel LJ (2011) Functional agonism of insect odorant receptor ion channels. Proc Natl Acad Sci USA 108:8821–8825

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karlson P, Luscher M (1959) Pheromones: a new term for a class of biologically active substances. Nature (Lond) 183:55–56

    Article  CAS  Google Scholar 

  • Katada S, Hirokawa T, Oka Y, Suwa M, Touhara K (2005) Structural basis for a broad but selective ligand spectrum of a mouse olfactory receptor: mapping the odorant-binding site. J Neurosci 25:1806–1815

    Article  CAS  PubMed  Google Scholar 

  • Kato A, Touhara K (2009) Mammalian olfactory receptors: pharmacology, G protein coupling and desensitization. Cell Mol Life Sci 66:3743–3753

    Article  CAS  PubMed  Google Scholar 

  • Kato A, Katada S, Touhara K (2008) Amino acids involved in conformational dynamics and G protein coupling of an odorant receptor: targeting gain-of-function mutation. J Neurochem 107:1261–1270

    Article  CAS  PubMed  Google Scholar 

  • Ko HJ, Lee SH, Oh EH, Park TH (2010) Specificity of odorant-binding proteins: a factor influencing the sensitivity of olfactory receptor-based biosensors. Bioprocess Biosyst Eng 33:55–62

    Article  CAS  PubMed  Google Scholar 

  • Kobayakawa K, Kobayakawa R, Matsumoto H, Oka Y, Imai T, Ikawa M, Okabe M, Ikeda T, Itohara S, Kikusui T et al (2007) Innate versus learned odour processing in the mouse olfactory bulb. Nature (Lond) 450:503–508

    Article  CAS  Google Scholar 

  • Kurtovic A, Widmer A, Dickson BJ (2007) A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature (Lond) 446:542–546

    Article  CAS  Google Scholar 

  • Leinders-Zufall T, Ishii T, Mombaerts P, Zufall F, Boehm T (2009) Structural requirements for the activation of vomeronasal sensory neurons by MHC peptides. Nat Neurosci 12:1551–1558

    Article  CAS  PubMed  Google Scholar 

  • Liberles SD, Buck LB (2006) A second class of chemosensory receptors in the olfactory epithelium. Nature (Lond) 442:645–650

    Article  CAS  Google Scholar 

  • Liberles SD, Horowitz LF, Kuang D, Contos JJ, Wilson KL, Siltberg-Liberles J, Liberles DA, Buck LB (2009) Formyl peptide receptors are candidate chemosensory receptors in the vomeronasal organ. Proc Natl Acad Sci USA 106:9842–9847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu W, Liang X, Gong J, Yang Z, Zhang YH, Zhang JX, Rao Y (2011) Social regulation of aggression by pheromonal activation of Or65a olfactory neurons in Drosophila. Nat Neurosci 14:896–902

    Article  CAS  PubMed  Google Scholar 

  • Logan DW, Brunet LJ, Webb WR, Cutforth T, Ngai J, Stowers L (2012) Learned recognition of maternal signature odors mediates the first suckling episode in mice. Curr Biol 22:1998–2007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lucretius (1995) On the nature of things: De rerum natura. (Anthony M. Esolen, transl.) The Johns Hopkins University, Baltimore)

    Google Scholar 

  • Meeks JP, Arnson HA, Holy TE (2010) Representation and transformation of sensory information in the mouse accessory olfactory system. Nat Neurosci 13:723–730

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mori K, Sakano H (2011) How is the olfactory map formed and interpreted in the mammalian brain? Annu Rev Neurosci 34:467–499

    Article  CAS  PubMed  Google Scholar 

  • Munger SD, Leinders-Zufall T, Zufall F (2009) Subsystem organization of the mammalian sense of smell. Annu Rev Physiol 71:115–140

    Article  CAS  PubMed  Google Scholar 

  • Nagashima A, Touhara K (2010) Enzymatic conversion of odorants in nasal mucus affects olfactory glomerular activation patterns and odor perception. J Neurosci 30:16391–16398

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Touhara K (2013) Extracellular modulation of the silkmoth sex pheromone receptor activity by cyclic nucleotides. PLoS One 8:e63774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakagawa T, Sakurai T, Nishioka T, Touhara K (2005) Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science 307:1638–1642

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Pellegrino M, Sato K, Vosshall LB, Touhara K (2012) Amino acid residues contributing to function of the heteromeric insect olfactory receptor complex. PLoS One 7:e32372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nara K, Saraiva LR, Ye X, Buck LB (2011) A large-scale analysis of odor coding in the olfactory epithelium. J Neurosci 31:9179–9191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nei M, Niimura Y, Nozawa M (2008) The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nat Rev Genet 9:951–963

    Article  CAS  PubMed  Google Scholar 

  • Nichols AS, Luetje CW (2010) Transmembrane segment 3 of Drosophila melanogaster odorant receptor subunit 85b contributes to ligand–receptor interactions. J Biol Chem 285:11854–11862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Niimura Y (2009) On the origin and evolution of vertebrate olfactory receptor genes: comparative genome analysis among 23 chordate species. Genome Biol Evol 1:34–44

    Article  PubMed Central  PubMed  Google Scholar 

  • Nodari F, Hsu FF, Fu X, Holekamp TF, Kao LF, Turk J, Holy TE (2008) Sulfated steroids as natural ligands of mouse pheromone-sensing neurons. J Neurosci 28:6407–6418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rasmussen LE, Schulte BA (1998) Chemical signals in the reproduction of Asian (Elephas maximus) and African (Loxodonta africana) elephants. Anim Reprod Sci 53:19–34

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D et al (2011) Crystal structure of the beta2 adrenergic receptor–Gs protein complex. Nature (Lond) 477:549–555

    Article  CAS  Google Scholar 

  • Riviere S, Challet L, Fluegge D, Spehr M, Rodriguez I (2009) Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature (Lond) 459:574–577

    Article  CAS  Google Scholar 

  • Rytz R, Croset V, Benton R (2013) Ionotropic receptors (IRs): chemosensory ionotropic glutamate receptors in Drosophila and beyond. Insect Biochem Mol Biol 43:888–897

    Article  CAS  PubMed  Google Scholar 

  • Saito H, Chi Q, Zhuang H, Matsunami H, Mainland JD (2009) Odor coding by a mammalian receptor repertoire. Sci Signal 2:ra9

    Article  PubMed Central  PubMed  Google Scholar 

  • Sakurai T, Nakagawa T, Mitsuno H, Mori H, Endo Y, Tanoue S, Yasukochi Y, Touhara K, Nishioka T (2004) Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori. Proc Natl Acad Sci USA 101:16653–16658

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sato K, Pellegrino M, Nakagawa T, Vosshall LB, Touhara K (2008) Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature (Lond) 452:1002–1006

    Article  CAS  Google Scholar 

  • Schaal B, Coureaud G, Langlois D, Ginies C, Semon E, Perrier G (2003) Chemical and behavioural characterization of the rabbit mammary pheromone. Nature (Lond) 424:68–72

    Article  CAS  Google Scholar 

  • Schmid A, Pyrski M, Biel M, Leinders-Zufall T, Zufall F (2010) Grueneberg ganglion neurons are finely tuned cold sensors. J Neurosci 30:7563–7568

    Article  CAS  PubMed  Google Scholar 

  • Semmelhack JL, Wang JW (2009) Select Drosophila glomeruli mediate innate olfactory attraction and aversion. Nature (Lond) 459:218–223

    Article  CAS  Google Scholar 

  • Shirasu M, Touhara K (2011) The scent of disease: volatile organic compounds of the human body related to disease and disorder. J Biochem (Tokyo) 150:257–266

    Article  CAS  Google Scholar 

  • Shirasu M, Yoshikawa K, Takai Y, Nakashima A, Takeuchi H, Sakano H, Touhara K (2014) Olfactory receptor and neural pathway responsible for highly selective sensing of musk odors. Neuron 81:165–178

    Article  CAS  PubMed  Google Scholar 

  • Sosulski DL, Bloom ML, Cutforth T, Axel R, Datta SR (2011) Distinct representations of olfactory information in different cortical centres. Nature (Lond) 472:213–216

    Article  CAS  Google Scholar 

  • Stensmyr MC, Dweck HK, Farhan A, Ibba I, Strutz A, Mukunda L, Linz J, Grabe V, Steck K, Lavista-Llanos S et al (2012) A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell 151:1345–1357

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Uda Y, Ono Y, Nakagawa T, Suwa M, Yamaoka R, Touhara K (2009) Highly selective tuning of a silkworm olfactory receptor to a key mulberry leaf volatile. Curr Biol 19:881–890

    Article  CAS  PubMed  Google Scholar 

  • Thiebaud N, Veloso Da Silva S, Jakob I, Sicard G, Chevalier J, Menetrier F, Berdeaux O, Artur Y, Heydel JM, Le Bon AM (2013) Odorant metabolism catalyzed by olfactory mucosal enzymes influences peripheral olfactory responses in rats. PLoS One 8:e59547

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Touhara K (2007) Deorphanizing vertebrate olfactory receptors: recent advances in odorant-response assays. Neurochem Int 51:132–139

    Article  CAS  PubMed  Google Scholar 

  • Touhara K (2008) Sexual communication via peptide and protein pheromones. Curr Opin Pharmacol 8:759–764

    Article  CAS  PubMed  Google Scholar 

  • Touhara K, Vosshall LB (2009) Sensing odorants and pheromones with chemosensory receptors. Annu Rev Physiol 71:307–332

    Article  CAS  PubMed  Google Scholar 

  • Wicher D, Schafer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH, Hansson BS (2008) Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature (Lond) 452:1007–1011

    Article  CAS  Google Scholar 

  • Wyatt TD (2003) Pheromones and animal behavior: communication by smell and taste. Oxford University Press, Oxford

    Book  Google Scholar 

  • Wyatt TD (2010) Pheromones and signature mixtures: defining species-wide signals and variable cues for identity in both invertebrates and vertebrates. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 196:685–700

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki K, Beauchamp GK, Singer A, Bard J, Boyse EA (1999) Odortypes: their origin and composition. Proc Natl Acad Sci USA 96:1522–1525

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshikawa K, Nakagawa H, Mori N, Watanabe H, Touhara K (2013) An unsaturated aliphatic alcohol as a natural ligand for a mouse odorant receptor. Nat Chem Biol 9:160–162

    Article  CAS  PubMed  Google Scholar 

  • Yoshinaga S, Sato T, Hirakane M, Esaki K, Hamaguchi T, Haga-Yamanaka S, Tsunoda M, Kimoto H, Shimada I, Touhara K et al (2013) Structure of the mouse sex peptide pheromone ESP1 reveals a molecular basis for specific binding to the class-C G-protein-coupled vomeronasal receptor. J Biol Chem 288:16064–16072

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Pacifico R, Cawley D, Feinstein P, Bozza T (2013) Ultrasensitive detection of amines by a trace amine-associated receptor. J Neurosci 33:3228–3239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from MEXT, JSPS, and the JST ERATO project in Japan. I thank current and past Touhara laboratory members for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazushige Touhara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Touhara, K. (2014). Odor and Pheromone Molecules, Receptors, and Behavioral Responses. In: Mori, K. (eds) The Olfactory System. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54376-3_2

Download citation

Publish with us

Policies and ethics