Skip to main content

Advertisement

Log in

HTLV-1 Infection and Neuropathogenesis in the Context of Rag1-/-γc-/- (RAG1-Hu) and BLT Mice

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

To date, the lack of a suitable small animal model has hindered our understanding of Human T-cell lymphotropic virus (HTLV)-1 chronic infection and associated neuropathogenesis defined as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The host immune response plays a critical role in the outcome of HTLV-1 infection, which could be better tested in the context of humanized (hu) mice. Thus, we employ here the Balb/c-Rag1−/−γc−/− or Rag1 as well as Bone marrow-Liver-Thymic (BLT) mouse models for engraftment of human CD34+ hematopoietic stem cells. Flow cytometry and histological analyses confirmed reconstitution of Rag1 and BLT mice with human immune cells. Following HTLV-1 infection, proviral load (PVL) was detected in the blood of Rag-1 and BLT hu-mice as early as 2 weeks post-infection (wpi) with sustained elevation in the subsequent weeks followed by Tax expression. Additionally, infection was compared between adult and neonatal Rag1 mice with both PVL and Tax expression considerably higher in the adult Rag1 mice as compared to the neonates. Establishment of peripheral infection led to lymphocytic infiltration with concomitant Tax expression and resulting myelin disruption within the central nervous system of infected mice. In addition, up-regulation in the expression of several immune checkpoint mediators such as programmed cell death-1 (PD-1), T-cell Ig and ITIM domain (TIGIT), and T cell Ig and mucin domain-3 protein (Tim-3) were observed on CD8+ T cells in various organs including the CNS of infected hu-mice. Collectively, these studies represent the first attempt to establish HTLV-1 neuropathogenesis in the context of Rag-1 and BLT hu-mice as potential novel tools for understanding HTLV-1 neuropathogenesis and testing of novel therapies such as immune checkpoint blockade in the amelioration of chronic HTLV-1 infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdelbary NH, Abdullah HM, Matsuzaki T, Hayashi D, Tanaka Y, Takashima H, Izumo S, Kubota R (2011) Reduced Tim-3 expression on human T-lymphotropic virus type I (HTLV-I) tax-specific cytotoxic T lymphocytes in HTLV-I infection. J Infect Dis 203:948–959

    Article  CAS  PubMed  Google Scholar 

  • Akkina R, Berges BK, Palmer BE, Remling L, Neff CP, Kuruvilla J, Connick E, Folkvord J, Gagliardi K, Kassu A, Akkina SR (2011) Humanized Rag1−/− gammac−/− mice support multilineage hematopoiesis and are susceptible to HIV-1 infection via systemic and vaginal routes. PLoS One 6:e20169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amorim CF, Souza AS, Diniz AG, Carvalho NB, Santos SB, Carvalho EM (2014) Functional activity of monocytes and macrophages in HTLV-1 infected subjects. PLoS Negl Trop Dis 8:e3399

    Article  PubMed  PubMed Central  Google Scholar 

  • Banerjee P, Tripp A, Lairmore MD, Crawford L, Sieburg M, Ramos JC, Harrington W Jr, Beilke MA, Feuer G (2010) Adult T-cell leukemia/lymphoma development in HTLV-1-infected humanized SCID mice. Blood 115:2640–2648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bangham CR (2008) HTLV-1 infection: role of CTL efficiency. Blood 112:2176–2177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bangham CR (2009) CTL quality and the control of human retroviral infections. Eur J Immunol 39:1700–1712

    Article  CAS  PubMed  Google Scholar 

  • Bangham CR, Meekings K, Toulza F, Nejmeddine M, Majorovits E, Asquith B, Taylor GP (2009) The immune control of HTLV-1 infection: selection forces and dynamics. Front Biosci (Landmark Ed) 14:2889–2903

    Article  CAS  Google Scholar 

  • Barmak K, Harhaj E, Grant C, Alefantis T, Wigdahl B (2003) Human T cell leukemia virus type I-induced disease: pathways to cancer and neurodegeneration. Virology 308:1–12

    Article  CAS  PubMed  Google Scholar 

  • Berges BK, Wheat WH, Palmer BE, Connick E, Akkina R (2006) HIV-1 infection and CD4 T cell depletion in the humanized Rag2−/−gamma c−/− (RAG-hu) mouse model. Retrovirology 3:76–89

    Article  PubMed  PubMed Central  Google Scholar 

  • Biddison WE, Kubota R, Kawanishi T, Taub DD, Cruikshank WW, Center DM, Connor EW, Utz U, Jacobson S (1997) Human T cell leukemia virus type I (HTLV-I)-specific CD8+ CTL clones from patients with HTLV-I-associated neurologic disease secrete proinflammatory cytokines, chemokines, and matrix metalloproteinase. J Immunol 159:2018–2025

    CAS  PubMed  Google Scholar 

  • Brunetto GS, Massoud R, Leibovitch EC, Caruso B, Johnson K, Ohayon J, Fenton K, Cortese I, Jacobson S (2014) Digital droplet PCR (ddPCR) for the precise quantification of human T-lymphotropic virus 1 proviral loads in peripheral blood and cerebrospinal fluid of HAM/TSP patients and identification of viral mutations. J Neuro-Oncol 20:341–351

    CAS  Google Scholar 

  • Cabral F, Arruda LB, de Araujo ML, Montanheiro P, Smid J, de Oliveira AC, Duarte AJ, Casseb J (2012) Detection of human T-cell lymphotropic virus type 1 in plasma samples. Virus Res 163:87–90

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Flies DB (2013) Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 13:227–242

    Article  PubMed  PubMed Central  Google Scholar 

  • Cook LB, Rowan AG, Melamed A, Taylor GP, Bangham CR (2012) HTLV-1-infected T cells contain a single integrated provirus in natural infection. Blood 120:3488–3490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coutinho R Jr, Grassi MF, Korngold AB, Olavarria VN, Galvao-Castro B, Mascarenhas RE (2014) Human T lymphotropic virus type 1 (HTLV-1) proviral load induces activation of T-lymphocytes in asymptomatic carriers. BMC Infect Dis 14:453

    Article  PubMed  PubMed Central  Google Scholar 

  • Dodon MD (2014) Of mice, men, and HTLV-1. Blood 123:303–304

    Article  CAS  PubMed  Google Scholar 

  • Dudek TE, Allen TM (2013) HIV-specific CD8+ T-cell immunity in humanized Bone marrow-liver-thymus mice. J Infect Dis 208(Suppl 2):S150–S154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudek TE, No DC, Seung E, Vrbanac VD, Fadda L, Bhoumik P, Boutwell CL, Power KA, Gladden AD, Battis L, Mellors EF, Tivey TR, Gao X, Altfeld M, Luster AD, Tager AM, Allen TM (2012) Rapid evolution of HIV-1 to functional CD8(+) T cell responses in humanized BLT mice. Sci Transl Med 4:143ra198

    Article  Google Scholar 

  • Fuertes Marraco SA, Neubert NJ, Verdeil G, Speiser DE (2015) Inhibitory receptors beyond T cell exhaustion. Front Immunol 6:310

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuzii HT, da Silva Dias GA, de Barros RJ, Falcao LF, Quaresma JA (2014) Immunopathogenesis of HTLV-1-assoaciated myelopathy/tropical spastic paraparesis (HAM/TSP). Life Sci 104:9–14

    Article  CAS  PubMed  Google Scholar 

  • Gorantla S, Makarov E, Finke-Dwyer J, Castanedo A, Holguin A, Gebhart CL, Gendelman HE, Poluektova L (2010) Links between progressive HIV-1 infection of humanized mice and viral neuropathogenesis. Am J Pathol 177:2938–2949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajj HE, Nasr R, Kfoury Y, Dassouki Z, Nasser R, Kchour G, Hermine O, de The H, Bazarbachi A (2012) Animal models on HTLV-1 and related viruses: what did we learn? Front Microbiol 3:333

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanon E, Hall S, Taylor GP, Saito M, Davis R, Tanaka Y, Usuku K, Osame M, Weber JN, Bangham CR (2000) Abundant tax protein expression in CD4+ T cells infected with human T-cell lymphotropic virus type I (HTLV-I) is prevented by cytotoxic T lymphocytes. Blood 95:1386–1392

    CAS  PubMed  Google Scholar 

  • Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, Bright IJ, Lucero MY, Hiddessen AL, Legler TC, Kitano TK, Hodel MR, Petersen JF, Wyatt PW, Steenblock ER, Shah PH, Bousse LJ, Troup CB, Mellen JC, Wittmann DK, Erndt NG, Cauley TH, Koehler RT, So AP, Dube S, Rose KA, Montesclaros L, Wang S, Stumbo DP, Hodges SP, Romine S, Milanovich FP, White HE, Regan JF, Karlin-Neumann GA, Hindson CM, Saxonov S, Colston BW (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 83:8604–8610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyun J, Ramos JC, Toomey N, Balachandran S, Lavorgna A, Harhaj E, Barber GN (2015) Oncogenic HTLV-1 tax suppression of primary innate immune signaling pathways. J Virol 89:4880–4893

  • Ito R, Takahashi T, Katano I, Ito M (2012) Current advances in humanized mouse models. Cell Mol Immunol 9:208–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izumo S (2010) Neuropathology of HTLV-1-associated myelopathy (HAM/TSP): the 50th anniversary of Japanese society of Neuropathology. Neuropathology 30:480–485

    PubMed  Google Scholar 

  • Jacobson S, Shida H, McFarlin DE, Fauci AS, Koenig S (1990) Circulating CD8+ cytotoxic T lymphocytes specific for HTLV-I pX in patients with HTLV-I associated neurological disease. Nature 348:245–248

    Article  CAS  PubMed  Google Scholar 

  • Kozako T, Yoshimitsu M, Akimoto M, White Y, Matsushita K, Soeda S, Shimeno H, Kubota R, Izumo S, Arima N (2011) Programmed death-1 (PD-1)/PD-1 ligand pathway-mediated immune responses against human T-lymphotropic virus type 1 (HTLV-1) in HTLV-1-associated myelopathy/tropical spastic paraparesis and carriers with autoimmune disorders. Hum Immunol 72:1001–1006

    Article  CAS  PubMed  Google Scholar 

  • Kubota R, Soldan SS, Martin R, Jacobson S (2002) Selected cytotoxic T lymphocytes with high specificity for HTLV-I in cerebrospinal fluid from a HAM/TSP patient. J Neuro-Oncol 8:53–57

    Google Scholar 

  • Lairmore MD (2014) Animal models of bovine leukemia virus and human T-lymphotrophic virus type-1: insights in transmission and pathogenesis. Annu Rev Anim Biosci 2:189–208

    Article  CAS  PubMed  Google Scholar 

  • Lairmore MD, Silverman L, Ratner L (2005) Animal models for human T-lymphotropic virus type 1 (HTLV-1) infection and transformation. Oncogene 24:6005–6015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan P, Tonomura N, Shimizu A, Wang S, Yang YG (2006) Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood 108:487–492

    Article  CAS  PubMed  Google Scholar 

  • Legrand N, Weijer K, Spits H (2006) Experimental models to study development and function of the human immune system in vivo. J Immunol 176:2053–2058

    Article  CAS  PubMed  Google Scholar 

  • Lepoutre V, Jain P, Quann K, Wigdahl B, Khan ZK (2009) Role of resident CNS cell populations in HTLV-1-associated neuroinflammatory disease. Front Biosci (Landmark Ed) 14:1152–1168

    Article  CAS  Google Scholar 

  • Levin MC, Jacobson S (1997) HTLV-I associated myelopathy/tropical spastic paraparesis (HAM/TSP): a chronic progressive neurologic disease associated with immunologically mediated damage to the central nervous system. J Neuro-Oncol 3:126–140

    CAS  Google Scholar 

  • Levin MC, Lee SM, Kalume F, Morcos Y, Dohan FC Jr, Hasty KA, Callaway JC, Zunt J, Desiderio D, Stuart JM (2002) Autoimmunity due to molecular mimicry as a cause of neurological disease. Nat Med 8:509–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Cowley DO, Banner D, Holle E, Zhang L, Su L (2014) Efficient genetic manipulation of the NOD-Rag1−/−IL2RgammaC-null mouse by combining in vitro fertilization and CRISPR/Cas9 technology. Sci Rep 4:5290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Nair G, Vuolo L, Bakshi A, Massoud R, Reich DS, Jacobson S (2014) In vivo imaging of spinal cord atrophy in neuroinflammatory diseases. Ann Neurol 76:370–378

    Article  PubMed  PubMed Central  Google Scholar 

  • Manuel SL, Sehgal M, Connolly J, Makedonas G, Khan ZK, Gardner J, Betts MR, Jain P (2013a) Lack of recall response to tax in ATL and HAM/TSP patients but not in asymptomatic carriers of human T-cell leukemia virus type 1. J Clin Immunol 33:1223–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manuel SL, Sehgal M, Khan ZK, Goedert JJ, Betts MR, Jain P (2013b) An altered maturation and adhesion phenotype of dendritic cells in diseased individuals compared to asymptomatic carriers of human T cell leukemia virus type 1. AIDS Res Hum Retrovir 29:1273–1285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Melkus MW, Estes JD, Padgett-Thomas A, Gatlin J, Denton PW, Othieno FA, Wege AK, Haase AT, Garcia JV (2006) Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med 12:1316–1322

    Article  CAS  PubMed  Google Scholar 

  • Morgan O (2011) HTLV-1 associated myelopathy/tropical spastic paraparesis: how far have we come? West Indian Med J 60:505–512

    CAS  PubMed  Google Scholar 

  • Nagai M, Osame M (2003) Human T-cell lymphotropic virus type I and neurological diseases. J Neuro-Oncol 9:228–235

    CAS  Google Scholar 

  • Ndhlovu LC, Leal FE, Hasenkrug AM, Jha AR, Carvalho KI, Eccles-James IG, Bruno FR, Vieira RG, York VA, Chew GM, Jones RB, Tanaka Y, Neto WK, Sanabani SS, Ostrowski MA, Segurado AC, Nixon DF, Kallas EG (2011) HTLV-1 tax specific CD8+ T cells express low levels of Tim-3 in HTLV-1 infection: implications for progression to neurological complications. PLoS Negl Trop Dis 5:e1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olavarria VN, Gomes Ado N, Kruschewsky Rde A, Galvao-Castro B, Grassi MF (2012) Evolution of HTLV-1 proviral load in patients from Salvador, Brazil. Braz J Infect Dis 16:357–360

    Article  PubMed  Google Scholar 

  • Oliere S, Douville R, Sze A, Belgnaoui SM, Hiscott J (2011) Modulation of innate immune responses during human T-cell leukemia virus (HTLV-1) pathogenesis. Cytokine Growth Factor Rev 22:197–210

    Article  CAS  PubMed  Google Scholar 

  • Panfil AR, Al-Saleem JJ, Green PL (2013) Animal models utilized in HTLV-1 research. Virology (Auckl) 4:49–59

    Google Scholar 

  • Pinheiro LB, Coleman VA, Hindson CM, Herrmann J, Hindson BJ, Bhat S, Emslie KR (2012) Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal Chem 84:1003–1011

    Article  CAS  PubMed  Google Scholar 

  • Publicover J, Goodsell A, Nishimura S, Vilarinho S, Wang ZE, Avanesyan L, Spolski R, Leonard WJ, Cooper S, Baron JL (2011) IL-21 is pivotal in determining age-dependent effectiveness of immune responses in a mouse model of human hepatitis B. J Clin Invest 121:1154–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito M, Bangham CR (2012) Immunopathogenesis of human T-cell leukemia virus type-1-associated myelopathy/tropical spastic paraparesis: recent perspectives. Leuk Res Treatment 2012:259045

    PubMed  PubMed Central  Google Scholar 

  • Seung E, Dudek TE, Allen TM, Freeman GJ, Luster AD, Tager AM (2013) PD-1 blockade in chronically HIV-1-infected humanized mice suppresses viral loads. PLoS One 8:e77780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A, Manz MG (2004) Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304:104–107

    Article  CAS  PubMed  Google Scholar 

  • Veselinovic M, Neff CP, Mulder LR, Akkina R (2012) Topical gel formulation of broadly neutralizing anti-HIV-1 monoclonal antibody VRC01 confers protection against HIV-1 vaginal challenge in a humanized mouse model. Virology 432:505–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yari A, Rezaee SA, Valizadeh N, Rajaee T, Jazayeri SM, Soltani M, Norouzi M (2014) Evaluation of HTLV-1 activity in HAM/TSP patients using proviral load and tax mRNA expression after in vitro lymphocyte activation. Iran J Basic Med Sci 17:531–536

    PubMed  PubMed Central  Google Scholar 

  • Yoshida M (2005) Discovery of HTLV-1, the first human retrovirus, its unique regulatory mechanisms, and insights into pathogenesis. Oncogene 24:5931–5937

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

These studies were supported by the National Institutes of Health (NIH) via NINDS R01NS097147-01A1 and NCI R01CA054559-20 Revised awarded to PJ. We wish to acknowledge the help of Dr. Paige Charlins and Dr. Ramesh Akkina (Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collin, USA) in hu-mice experimentation. We would also like to thank Dr. Owen Chan and Dr. Brenda Hernandez from the University of Hawaii Cancer Center Pathology Shared Resource (funded in part by NIH/NCI P30 CA071789-17 to LN) for their contributions in immunohistochemistry data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pooja Jain.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ginwala, R., Caruso, B., Khan, Z.K. et al. HTLV-1 Infection and Neuropathogenesis in the Context of Rag1-/-γc-/- (RAG1-Hu) and BLT Mice. J Neuroimmune Pharmacol 12, 504–520 (2017). https://doi.org/10.1007/s11481-017-9740-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-017-9740-y

Keywords

Navigation