Skip to main content
Log in

Yielding of rockfill in relative humidity-controlled triaxial experiments

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The paper reports the results of suction-controlled triaxial tests performed on compacted samples of two well-graded granular materials in the range of coarse sand–medium gravel particle sizes: a quartzitic slate and a hard limestone. The evolution of grain size distributions is discussed. Dilatancy rules were investigated. Dilatancy could be described in terms of stress ratio, plastic work input and average confining stress. The shape of the yield locus in a triaxial plane was established by different experimental techniques. Yielding loci in both types of lithology is well represented by approximate elliptic shapes whose major axis follows approximately the K0 line. Relative humidity was found to affect in a significant way the evolution of grain size distribution, the deviatoric stress–strain response and the dilatancy rules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37

Similar content being viewed by others

References

  1. Alonso EE, Montobbio D (2002) Particle size effects on rockfill compressibility. In: Krizek RJ (ed) Symposium on geotechnical materials: measurement and analysis. Northwestern University, Evanston, IL, USA

    Google Scholar 

  2. Alonso EE, Olivella S, Pinyol N (2005) A review of Beliche Dam. Géotechnique 55(4):267–285

    Article  Google Scholar 

  3. Alonso EE, Olivella S, Soriano A, Pinyol NM, Esteban F (2011) Modelling Lechago earth and rockfill dam. Géotechnique 61(5):387–407

    Article  Google Scholar 

  4. Been K, Jefferies MG (1985) A state parameter for sands. Géotechnique 35(2):99–112

    Article  Google Scholar 

  5. Cattoni E, Cecconi M, Jommi C (2005) Soil dilatancy and suction: some remarks on their mutual effects on the shear strength of granular soils. In: Proceedings of the eleventh international conference on computers methods and advances in geomechanics, Torino, Italy, pp 19–26

  6. Cecconi M, DeSimone A, Tamagnini C, Viggiani MBG (2002) A constitutive model for granular materials with grain crushing and its application to a pyroclastic soil. Int J Numer Anal Methods Geomech 26:1531–1560

    Article  MATH  Google Scholar 

  7. Charles JA, Watts KS (1980) The influence of confining pressure on the shear strength of compacted rockfill. Géotechnique 4(3):353–398

    Article  Google Scholar 

  8. Charles JA, Soares MM (1984) Stability of compacted rockfill slopes. Géotechnique 34(1):61–70

    Article  Google Scholar 

  9. Chávez C (2004) Estudio del Comportamiento Triaxial de Materiales Granulares de Tamaño Medio con Énfasis en la Influenciade la Succión, PhD Thesis, Universitat Politècnica de Catalunya, Spain

  10. Chávez C, Alonso EE (2003) A constitutive model for granular aggregates which includes suction effects. Soils Found 43(4):215–227

    Article  Google Scholar 

  11. Chávez C, Romero E, Alonso EE (2009) A rockfill triaxial cell with suction control. Geotech Test J. doi:10.1520/GTJ101590

    Google Scholar 

  12. Chiu CF, Ng CWW (2003) A state-dependent elasto-plastic model for saturated and unsaturated soils. Géotechnique 53(9):809–829

    Article  Google Scholar 

  13. Clements RP (1981) The deformation of rockfill: inter-particle behaviour, bulk properties and behaviour in dams. PhD. Thesis, Faculty of Engineering, King’s College, London University

  14. Cui YJ, Delage P (1996) Yielding and plastic behaviour of an unsaturated compacted silt. Géotechnique 46(2):291–311

    Article  Google Scholar 

  15. Cui YJ, Delage P (1998) Plastic flow of an unsaturated compacted silt. In: Proceedings of de second international conference on unsaturated soils, Beijing, China, vol 1, pp 467–472

  16. Daouadji A, Hicher PY, Rahma A (2001) An elastoplastic model for granular materials taking into account grain breakage. Eur J Mech A/Solids 20(1):113–137

    Article  MATH  Google Scholar 

  17. Josselin De, de Jong G (1976) Rowe’s stress-dilatancy relation based on friction. Géotechnique 26(3):527–534

    Article  Google Scholar 

  18. De Mello VFB (1977) Seventh rankine lecture: reflections on design decisions of practical significance to embankment dams. Géotechnique 27(3):279–356

    Article  Google Scholar 

  19. Einav I (2007) Breakage mechanics. Part I: theory. J Mech Phys Solids 55(6):1274–1297

    Article  MathSciNet  MATH  Google Scholar 

  20. Einav I (2007) Breakage mechanics. Part II: modelling granular materials. J Mech Phys Solids 55(6):1298–1320

    Article  MathSciNet  MATH  Google Scholar 

  21. Frossard E, Hu W, Dano C, Hicher P-Y (2012) Rockfill shear strength evaluation: a rational method based on size effects. Géotechnique 62(5):415–427

    Article  Google Scholar 

  22. Fumagalli E (1969) Tests on cohesionless materials for rockfill dams. J Soil Mech Found Eng Div ASCE 95(SM1):313–330

  23. Hardin BO (1985) Crushing of Soil Particles. J Geotech Eng ASCE 111(10):1177–1192

    Article  Google Scholar 

  24. Indraratna I, Wijewardena LSS, Balasubramaniam AS (1993) Large-scale triaxial testing of greywacke rockfill. Géotechnique 43(1):37–51

    Article  Google Scholar 

  25. Indraratna B, Ionescu D, Christie HD (1998) Shear behavior of railway ballast based on large-scale triaxial tests. J Geotech Geoenviron Eng 124(5):439–449

    Article  Google Scholar 

  26. Indraratna B, Lackenby J, Christie D (2005) Effect of confining pressure on the degradation of ballast under cyclic loading. Géotechnique 55(4):325–328

    Article  Google Scholar 

  27. Indraratna B, Salim W (2005) Mechanics of ballasted rail tracks. A geotechnical perspective. Taylor & Francis/Balkema, London

  28. Indraratna B, Thakur PK, Vinod JS (2010) Experimental and numerical study of railway ballast behaviour under cyclic loading. Int J Geomech 10(4):136–144

    Article  Google Scholar 

  29. Kim MK, Lade PV (1988) Single Hardening constitutive model for frictional materials. I. Plastic potential function. Comput Geotech 5:307–324

    Article  Google Scholar 

  30. Lackenby J, Indraratna B, McDowell G, Christie D (2007) Effect of confining pressure on ballast degradation and deformation under cyclic triaxial loading. Geotechnique 57(6):527–536

    Article  Google Scholar 

  31. Lade PV, Kim MK (1988) Single hardening constitutive model for frictional materials. II. Yield criterion and plastic work contours. Comput Geotech 6:13–29

    Article  Google Scholar 

  32. Lagioia R, Puzrin AM, Potts DM (1996) A new versatile expression for yield and plastic potential surfaces. Comput Geotech 19(3):171–191

    Article  Google Scholar 

  33. Li XS, Dafalias YF (2000) Dilatancy for cohesionless soils. Géotechnique 50(4):449–460

    Article  Google Scholar 

  34. Marachi ND, Chan CK, Seed HB, Duncan JM (1969) Strength and deformation characteristics of rockfill materials, Department of Civil Engineering, Report No. TE-69-5. University of California

  35. Marsal RJ (1973) Mechanical properties of rockfill. In: Hirschfeld RC, Poulos SJ (eds) Embankment Dam Engineering. Casagrande Volume. Wiley, London

  36. McDowell GR (2000) A family of yield of loci based on micro mechanics. Soils Found 40(6):133–137

    Article  Google Scholar 

  37. Naylor DJ, Maranha das Neves E, Mattar D Jr, Pinto AAV (1986) Prediction of construction performance of Beliche Dam. Géotechnique 36(3):359–376

    Article  Google Scholar 

  38. Ng CWW, Zhou RZB (2005) Effects of soil suction on dilatancy of an unsaturated soil. In: Proceedings 16th international conference on soil mechanics and geotechnical engineering, Osaka, Japan, vol 2. Mill Press, Rotterdam, pp 559–562

  39. Ni H, Zheng W, Liu X, Gao Y (2011) Fractal-statistical analysis of grain-size distributions of debris-flow deposits and its geological implications. Landslides 8:253–259

    Article  Google Scholar 

  40. Nobari ES, Duncan JM (1972) Effect of reservoir filling on stresses and movements in earth and rockfill dams, Department of Civil Engineering, Report No. TE-72-1. University of California

  41. Nova R (1988) Sinfonietta classica: an exercise on classical soil modelling. In: Proceeding of international symposium constitutive equations for granular non-cohesive soils, pp 501–520. Balkema-Rotterdam, Cleveland

  42. Nova R (1991) A note on sand liquefaction and soil stability. Conference constitutive laws for engineering materials. ASME Press, Tucson

  43. Oldecop L, Alonso EE (2001) A model for rockfill compressibility. Géotechnique 51(2):127–139

    Article  Google Scholar 

  44. Oldecop L, Alonso EE (2003) Suction effects on rockfill compressibility. Géotechnique 53(2):289–292

    Article  Google Scholar 

  45. Oldecop LA, Alonso EE (2004) Testing rockfill under relative humidity control. Geotech Test J 27(3):269–278

    Google Scholar 

  46. Ortega E (2008) Comportamiento de materiales granulares gruesos. Efecto de la succión. Tesis Doctoral. Universitat Politècnica de Catalunya, Barcelona, España

  47. Ovalle C, Frossard E, Dano C, Hu W, Maiolino S, Hicher P-Y (2013) The effect of size on the strength of coarse rock aggregates and large rockfill samples through experimental data. Acta Mech 225:2199–2216

    Article  MATH  Google Scholar 

  48. Poorooshasb HB, Holubec I, Sherbourne AN (1967) Yielding and flow of sand in triaxial compression: parts II and III. Can Geotech J 4(4):376–397

    Article  Google Scholar 

  49. Ramon A, Alonso EE, Romero EE (2008) Grain size effects on rockfill constitutive behaviour. In: Proceedings of the 1st European conference on unsaturated soils. Taylor & Francis, pp 341–347

  50. Roscoe KH, Burland JB (1968) On the generalised stress strain behaviour of “wet” clay. Engineering plasticity: 535–609. Cambridge University Press, Cambridge

  51. Rowe PW (1962) The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. In: Proceedings of Royal Society London A, vol 269, pp 500–527

  52. Rzadkowski B, Zurek J (1970) Influence de l’eau sur la déformabilité des roches broyées et sur le tassement des barrages en enrochement. Trans. 10th Conf on Large Dams, Montreal, 1, pp 857–867

  53. Schofield AN, Wroth CP (1968) Critical state soil mechanics. McGraw Hill, London

    Google Scholar 

  54. Sowers GF, Williams RC, Wallace TS (1965) Compressibility of broken rock and settlement of rockfills. In: Proceedings of 6th ICSMFE. Montreal, vol 2, pp 561–565

  55. Tapias M, Alonso EE, Gili J (2016) A particle model for rockfill behavior. Géotechnique. doi:10.1680/jgeot.14.P.170

    Google Scholar 

  56. Tarantino A, Romero E, Cui Y-J (eds) (2009) Laboratory and field testing of unsaturated soils. Springer, Berlin

    Google Scholar 

  57. Varadarajan K, Sharma G, Venkatachalam K, Gupta AK (2003) Testing and modeling two rockfill materials. J Geotech Geoenviron Eng 129(3):206–218

    Article  Google Scholar 

  58. Pinto AAV (1983) Previsao do comportamento estrutural de barragens de enrocamento. PhD thesis, Laboratório Nacional de Engenharia Civil, Lisbon

  59. Wan RG, Guo PJ (1998) A simple constitutive model for granular soil: modified stress-dilatancy approach. Comput Geotech 22(2):109–133

    Article  Google Scholar 

  60. Xiao Y, Liu H, Chen Y, Jiang J (2014) Bounding surface plasticity model incorporating the state pressure index for rockfill materials. J Eng Mech ASCE. doi:10.1061/(ASCE)EM.1943-7889.0000802

    Google Scholar 

  61. Xiao Y, Liu H, Chen Y, Jiang J (2014) Bounding surface model for rockfill materials dependent on density and pressure under triaxial stress conditions. J Eng Mech. doi:10.1061/(ASCE)EM.1943-7889.0000702

    Google Scholar 

  62. Yamamuro JA, Lade PV (1996) Drained sand behaviour in axisymmetric tests at high pressures. J Geotech Eng ASCE 122(2):109–119

    Article  Google Scholar 

  63. Yasuda N, Matsumoto N (1994) Comparisons of deformation characteristics of rockfill materials using monotonic and cyclic loading laboratory tests and in situ tests. Can Geotech J 31:162–174

    Article  Google Scholar 

  64. Yasuda N, Matsumoto N, Yoshioka R, Takahashi M (1997) Undrained monotonic and cyclic strength of compacted rockfill material from triaxial and torsional simple shear tests. Can Geotech J 34:357–367

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo E. Alonso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alonso, E.E., Romero, E.E. & Ortega, E. Yielding of rockfill in relative humidity-controlled triaxial experiments. Acta Geotech. 11, 455–477 (2016). https://doi.org/10.1007/s11440-016-0437-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-016-0437-9

Keywords

Navigation