Skip to main content
Log in

Active earth pressure shielding in quay wall constructions: numerical modeling

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

By designing a quay wall construction the calculation of the active earth pressure behind the sheet pile wall is often a problem. Measurements and FE-analyses have shown that the earth pressure on a sheet pile wall is shielded due to the dowel effect of the pile rows behind the sheet piling. In conventional calculations a higher friction angle is used to take the dowel effect into account. In this study, numerical modeling using the Coupled Eulerian–Lagrangian method has been carried out to investigate the shielding effect of pile rows on the active earth pressure in sand. The failure mechanisms have been illustrated using the shear band patterns at the limit state. Based on the Terzaghi’s arching theory a new approach has been developed to estimate the shielding effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Abdel-Rahman K (1999) Numerische Untersuchungen von Massstabeffekten beim Erddruck in Sand. Dissertation, Schriftreihe des Lehrstuhls Baugrund-Grundbau der Universität Dortmund, Dortmund, 23

  2. Achmus M, Thieken K (2010) On the behavior of piles in non-cohesive soil under combined horizontal and vertical loading. Acta Geotech 5(3):199–210

    Article  Google Scholar 

  3. Ali A, Meier T, Herle I (2011) Numerical investigation of undrained cavity expansion in fine-grained soils. Acta Geotech 6(1):31–40

    Article  Google Scholar 

  4. Bransby MF (1996) Difference between load-transfer relationships for laterally loaded pile groups: active p-y or passive p-δ. J Geotech Geoenviron Eng 122(12):1015–1018

    Google Scholar 

  5. Bransby MF, Springman S (1999) Selection of load-transfer functions for passive lateral loading of pile groups. Comput Geotech 24(3):155–184

    Article  Google Scholar 

  6. Chen CY, Martin GR (2002) Soil-structure interaction for landslide stabilizing piles. Comput Geotech 29:363–386

    Article  Google Scholar 

  7. Cudmani R, V. A.Osinov V (2001) The cavity expansion problem for the interpretation of cone penetration and pressuremeter tests. Can Geotech J 38(3):622–638

    Article  Google Scholar 

  8. Dassault Systèmes (2008) ABAQUS, Version 6.8EF Documentation

  9. El Sawwaf MA (2005) Strip footing behavior on pile and sheet pile-stabilized sand slope. J Geotech Geoenviron Eng 131(6):705–715

    Article  Google Scholar 

  10. Fang YS, Chen JM, Chen CY (1997) Earth pressures with sloping backfill. J Geotech Geoenviron Eng 123(3):250–259

    Article  Google Scholar 

  11. Förster K (1937) Die Abschirmung des Erddrucks vor Sprundwänden durch Pfahlroste. Mitteilungen der Hannoverschen Hochschulgemeinschaft 17(18):122–127

    Google Scholar 

  12. Goldscheider M, Hettler A (2011) Zur Gleitkreisberechnung ohne Lamellen nach DIN 4084. Geotechnik 34(3):181–192

    Article  Google Scholar 

  13. Gudehus G (1984) Seitenddruck auf Pfählen in tonigen Böden. Geotechnik 7(2):73–84

    Google Scholar 

  14. Gudehus G (2011) Physical soil mechanics. Springer, Berlin

    Book  Google Scholar 

  15. Guo P (2010) Effect of density and compressibility on K0 of cohesionless soils. Acta Geotech 5(4):225–238

    Article  MATH  Google Scholar 

  16. Gutberlet C (2008) Erdwiderstand in homogenem und geschichtetem Baugrund, Experimente und Numerik. Dissertation, Mitteilungen des Institutes und der Versuchsanstalt fr Geotechnik der Technischen Universitt Darmstadt, 78

  17. Hamburg Port Authority (2005) Leistungsbeschreibung, Teil C, Anlage zu den Bemerkungen zum Leistungsverzeichnis (Teil B) für Uferbauwerke und Hochwasserschutzanlagen (unpublished)

  18. Henke S (2010) Influence of pile installation on adjacent structures. Int J Numer Anal Methods Geomech 34(11):1191–1210

    Google Scholar 

  19. Henke S, Grabe J (2008) Numerical investigation of soil plugging inside open-ended piles with respect to the installation method. Acta Geotech 3(3):215–223

    Article  Google Scholar 

  20. Henke S, Qiu G (2010) Zum Absetzvorgang von Offshore-Hubplattformen. Geotechnik 33(3):284–292

    Google Scholar 

  21. Herle I (1997) Hypoplastizität und Granulometrie einfacher Korngerüste. Dissertation, Veröffentlichungen des Instituts für Bodenmechanik und Felsmechanik der Universität Karlsruhe, Karlsruhe, 142

  22. Hewlett WJ, Randolph MF (1988) Analysis of piled embankments. Ground Eng 21(3):12–18

    Google Scholar 

  23. Ito T, Matsui T (1975) Methods to estimate lateral force acting on stabilizing piles. Soils Found 15(4):43–59

    Article  Google Scholar 

  24. Jaky J (1948) Pressure in silos. In: Proceedings of 2nd international conference on soil mechanics and foundation engineering, vol 1, pp 103–107

  25. Kanagasabai S, Smethurst JA, Powrie W (2011) Three-dimensional numerical modelling of discrete piles used to stabilize landslides. Can Geotech J 48(9):1393–1411

    Article  Google Scholar 

  26. Katzenbach R, Bachmann G, Gutberlet C (2005) Pile-soil-wall-interaction during the construction process of deep excavation pits. In: 16th International conference on soil mechanics and geotechnical engineering, Osaka, Japan, pp 1501–1504

  27. Kelm M (2004) Numerische Simulation der Verdichtung rolliger Böden mittels Vibrationswalzen. Dissertation, Veröffentlichungen des Instituts für Geotechnik und Baubetrieb der TU Hamburg-Harburg, Hamburg, 6

  28. Kolymbas D (1977) A rate-dependent constitutive equation for soils. Mech Res Comm 4:367–372

    Article  Google Scholar 

  29. Lirer S, Flora A, Nicotera MV (2011) Some remarks on the coefficient of earth pressure at rest in compacted sandy gravel. Acta Geotech 6(1):1–12

    Article  Google Scholar 

  30. Mardfeldt B (2005) Zum Tragverhalten von Kaikonstruktionen im Gebrauchszustand. Dissertation, Veröffentlichungen des Instituts für Geotechnik und Baubetrieb der TU Hamburg-Harburg, Hamburg, 11

  31. Matlock H (1970) Correlation for design of laterally loaded piles in soft clay. In: Proceedings of offshore technology conference. OTC 1204

  32. Matsui T, Hong WP, Ito T (1982) Earth pressure on piles in a row due to lateral soil movements. Soils Found 22(2):71–81

    Article  Google Scholar 

  33. Möllmann J (2011) Experimentelle Untersuchungen zur Erddruckabschirmung. Diplomarbeit, Institut für Geotechnik und Baubetrieb, Technische Universität Hamburg-Harburg, Hamburg

    Google Scholar 

  34. Müller-Breslau HFB (1906) Erddruck auf Stützmauern. Kröner, Stuttgart

    MATH  Google Scholar 

  35. Pan JL, Goh ATC, Wong KS, Teh CI (2000) Model tests on single piles in soft clay. Can Geotech J 37(4):890–897

    Article  Google Scholar 

  36. Pan JL, Goh ATC, Wong KS, Teh CI (2002) Ultimate soil pressures for piles subjected to lateral soil movements. J Geotech Geoenviron Eng 128(6):530–535

    Article  Google Scholar 

  37. Poulos HG, Chen LT, Hull TS (1995) Model tests on single piles subjected to lateral soil movement. Soils Found 35(4):85–92

    Article  Google Scholar 

  38. Pucker T, Grabe J (2011) Structural optimization in geotechnical engineering: basics and application. Acta Geotech 6(1):41–49

    Article  Google Scholar 

  39. Pucker T, Grabe J (2012) Numerical simulation of the installation process of full displacement piles. Comput Geotech 45:93–106

    Article  Google Scholar 

  40. Qiu G, Grabe J (2011) Explicit modeling of cone and strip footing penetration under drained and undrained conditions using a visco-hypoplastic model. Geotechnik 34(3):205–217

    Article  Google Scholar 

  41. Qiu G, Henke S (2011) Controlled installation of spudcan foundations on loose sand overlying weak clay. Mar Struct 24(4):528–550

    Article  Google Scholar 

  42. Qiu G, Henke S, Grabe J (2011) Application of a coupled Eulerian-Lagrangian approach on geomechanical problems involving large deformations. Comput Geotech 38(1):30–39

    Article  Google Scholar 

  43. Reese LC, William R, Francis DK (1974) Analysis of laterally loaded piles in sand. In: Proceedings of offshore technology conference. OTC 2080

  44. Reimann K (2011) Experimentelle und numerische Untersuchungen zur Erddruckabschirmung. Diplomarbeit, Institut für Geotechnik und Baubetrieb, Technische Universität Hamburg-Harburg, Hamburg

    Google Scholar 

  45. Renk D, Kolymbas D (2011) Zur Dimensionierung von Nagelwänden. Geotechnik 34(3):169–180

    Article  Google Scholar 

  46. Rudolph C, Mardfeldt B, Dührkop J (2011) Vergleichsberechnungen zur Dalbenbemessung nach Blum und mit der p-y-Methode. Geotechnik 34(4):237–251

    Article  Google Scholar 

  47. Saitoh M (2010) Effect of local nonlinearity in cohesionless soil on optimal radius minimizing fixed-head pile bending by inertial and kinematic interactions. Acta Geotech 5(4):273–286

    Article  MathSciNet  Google Scholar 

  48. Stewart DP, Jewell RJ, Randolph MF (1994) Design of piled bridge abutments on soft clay for loading from lateral soil movements. Géotechnique 44(2):277–296

    Article  Google Scholar 

  49. Tejchman J, Górski J (2010) Finite element study of patterns of shear zones in granular bodies during plane strain compression. Acta Geotech 5(2):95–112

    Article  Google Scholar 

  50. Terzaghi K (1936) Stress distribution in dry and in saturated sand above a yielding trap-door. In: Proceedings of 1st international conference on soil mechanics and foundation engineering, pp 307–311

  51. Terzaghi K (1943) Theoretical soil mechanics. Wiley, New York

    Book  Google Scholar 

  52. Triantafyllidis T, Rchter L, Niemunis A, Prada-Sarmiento LF (2011) Shear banding in geomaterials under extensional plane strain conditions: physical and analytical model. Acta Geotech 6(2):93–103

    Article  Google Scholar 

  53. von Wolffersdorff PA (1996) A hypoplastic relation for granular material with a predefined limit state surface. Mech Cohesive-frictional Mater 1:251–271

    Article  Google Scholar 

  54. Zaeske D (2001) Zur Wirkungsweise von unbewehrten und bewehrten mineralischen Tragschichten ber pfahlartigen Gründungselementen. Dissertation, Schriftenreihe Geotechnik der Universität Kassel, Kassel, 10

  55. Ziegler M (1987) Berechnung des verschiebungsabhängigen Erddrucks in Sand. Dissertation, Veröffentlichungen des Instituts für Bodenmechanik und Felsmechanik der Universität Karlsruhe, Karlsruhe, 101

Download references

Acknowledgments

The present work has been funded by the German Research Foundation (DFG) in the framework of the research training group GRK 1096 “Ports for Container Ships of Future Generations”. The authors thank the DFG for funding this work. Furthermore, the authors appreciate the academic use of the commercial program Abaqus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Qiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, G., Grabe, J. Active earth pressure shielding in quay wall constructions: numerical modeling. Acta Geotech. 7, 343–355 (2012). https://doi.org/10.1007/s11440-012-0186-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-012-0186-3

Keywords

Navigation