Skip to main content
Log in

Research progress in protein post-translational modification

  • Review
  • Published:
Chinese Science Bulletin

Abstract

Protein post-translational modification plays an important role in organism. It makes the protein obtain more complicated structures, perfect functions, more accurate regulations and more specific operations. The most common protein post-translational modifications include ubiquitylation, phosphorylation, glycosylation, lipodation, methylation, and acetylation and so on. Ubiquitylation plays an essential role in cellular functions such as cellular differentiation, apoptosis, DNA repair, antigen processing, and stress response. Phosphorylation is related to physiological and pathological processes including cellular signal conduction, nervous activity, muscle contraction and proliferation, development and differentiation of cells. Protein glycosylation is of great importance for many cell processes like immunoprotection, virus replication, cell growth, and occurrence of inflammation and so on. Lipodation is vital to signal conduction. Histone methylation and acetylation are responsible for transcription regulation. In vivo, different post-translational modifications do not occur isolatedly, but influence each other’s function and cooperate with each other. Understanding what influences the post-translational modifications will help to uncover cellular processes and protein network in molecular level and finally direct more precise drug design targeting molecules. Post-translational modification mimics are set to dominate the next wave of protein therapeutics and become powerful medicinal tools in the 21st century.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Venter, J. C., Adams, M. D., Myers, E. et al., The sequence of the human genome, Science, 2001, 291: 1304–1351.

    Article  Google Scholar 

  2. Guo, Y. T., Li, Y. M., Zhao, Y. F., New progress in lipid protein synthesis, Organic Chemistry (in Chinese), 2004, 24(7): 722–727.

    Google Scholar 

  3. Hilt, W., Wolf, D. H., The ubiquitin-proteasome system: past, present and future, Cellular and Molecular Life Sciences, 2004, 61: 1545.

    Google Scholar 

  4. Fang, S., Weissman, A. M., A field guide to ubiquitylation, Cellular and Molecular Life Sciences, 2004, 61: 1546–1561.

    Article  Google Scholar 

  5. Hershko, A., Ciechanover, A., The ubiquitin system, Annu. Rev. Biochem., 1998, 67: 425–479.

    Article  Google Scholar 

  6. Pickart, C. M., Mechanisms underlying ubiquitination, Annu. Rev. Biochem., 2001, 70: 503–533.

    Article  Google Scholar 

  7. Weissman, A. M., Themes and variations on ubiquitylation, Nat. Rev. Mol. Cell. Biol., 2001, 2: 169–178.

    Article  Google Scholar 

  8. Wilkinson, K. D., Ubiquitination and deubiquitination:targeting of proteins for degradation by the proteasome, Semin. Cell Dev. Biol., 2000, 11: 141–148.

    Article  Google Scholar 

  9. Bence, N. F., Sampat, R. M., Kopito, R. R., Impairment of the ubiquitin-proteasome system by protein aggregation, Science, 2001, (292): 1552–1555.

  10. Spillantini, M. G., Schmidt, M. L., Lee, V. M. et al., α-synuclein in Lewy bodies, Nature, 1997, 388: 839–840.

    Article  Google Scholar 

  11. Engelender, S., Kaminsky, Z., Guo, X. et al., Synphilin-1 associates with α-synuclein and promotes the formation of cytosolic inclusions, Nat. Genet., 1999, 22: 110–114.

    Google Scholar 

  12. Layfield, R., Cavey, J. R., Lowe, J., Role of ubiquitin-mediated proteolysis in the pathogenesis of neurodegenerative disorders, Ageing Research Reviews, 2003, 2: 343–356.

    Article  Google Scholar 

  13. Robzyk, K., Recht, J., Osley, M. A., Rad6-dependent ubiquitination of histone H2B in yeast, Science, 2000, 287: 501–504.

    Article  Google Scholar 

  14. Hwang, W. W., Venkatasubrahmanyam S., Ianculescu A. G. et al., A conserved RING finger protein required for histone H2B monoubiquitination and cell size control, Mol. Cell., 2003, 11: 261–266.

    Article  Google Scholar 

  15. Wood, A., Krogan, N. J., Dover, J. et al., An E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter, Mol. Cell., 2003, 11: 267–274.

    Article  Google Scholar 

  16. Sun, Z. W., Allis, C. D., Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast, Nature, 2002, 418: 104–108.

    Google Scholar 

  17. Wang, H. B., Wang, L. J., Erdjument-Bromage, H. et al., Role of histone H2A ubiquitination in polycomb silencing, Nature, 2004, 431: 873–878.

    Google Scholar 

  18. Pham, A. D., Sauer, F., Ubiquitin-activating/conjugating activity of TAFII250, a mediator of activation of gene expression in drosophila, Science, 2000, 289: 2357–2360.

    Article  Google Scholar 

  19. Salghetti, S. E., Caudy, A. A., Chenoweth, J. G. et al., Regulation of transcriptional activation domain function ubiquitin, Science, 2001, (293): 1651–1653.

  20. Li, M., Chen, D., Shiloh, A. et al., Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization, Nature, 2002, 416: 648–653.

    Google Scholar 

  21. Dornan, D., Wertz, I., Shimizu, H. et al., The ubiquitin ligase COP1 is a critical negative regulator of p53, Nature, 2004, 429(6987): 86–92.

    Article  Google Scholar 

  22. Ficarro, S. B., McCleland, M. L., Stukenberg, P. T. et al., Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae, Nature Biotechnology, 2002, 20(3): 301–305.

    Article  Google Scholar 

  23. Krupa, A., Preethi, G., Srinivasan, N., Structural modes of stabilization of permissive phosphorylation sites in protein kinases:distinct strategies in Ser/Thr and Tyr kinases, J. Mol. Biol., 2004, 339: 1025–1039.

    Article  Google Scholar 

  24. Idriss, H. T., Three steps to cancer: how phosphorylation of tubulin, tubulin tyrosine ligase and P-glycoprotein may generate and sustain cancer, Cancer Chemother. Pharmacol., 2004, 54: 101–104.

    Article  Google Scholar 

  25. Binz, S. K., Sheehan, A. M., Wold, M. S., Replication protein A phosphorylation and the cellular response to DNA damage, DNA Repair, 2004, 3: 1015–1024.

    Article  Google Scholar 

  26. Cabrejos, M. E., Allende, C. C., Maldonado, E., Effects of phosphorylation by protein kinase CK2 on the human basal components of the RNA polymerase II transcription machinery, Journal of Cellular Biochemistry, 2004, 93: 2–10.

    Article  Google Scholar 

  27. Maile, T., Kwoczynski, S., Katzenberger, R. J. et al., TAF1 activates transcription by phosphorylation of Serine 33 in histone H2B, Science, 2004, 304: 1010–1014.

    Article  Google Scholar 

  28. Evans, M. J., Rice, C. M., Goff, S. P., Phosphorylation of hepatitis C virus nonstructural protein 5A modulates its protein interactions and viral RNA replication, P. N. A. S., 2004, 13038–13043.

  29. Jones, M. L., Craik, J. D., Gibbins, J. M. et al., Regulation of SHP-1 tyrosine phosphatase in human platelets by serine phosphorylation at its C terminus, J. Biol. Chem., 2004, 279(39): 40475–40483.

    Article  Google Scholar 

  30. Luo, S. Z., Li, Y. M., Chen, Z. Z. et al., Synthesis and matrix assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry study of phosphopeptide, Letters in Peptide Science, 2004, 10: 57–62.

    Google Scholar 

  31. Huang, Z. P., Li, Y. M., Luo, S. Z. et al., Identification of phosphorylation site of phosphopeptide by MALDI-PSD mass spectrometry, Molecular & Cellular Proteomics, 2004, 3(10): 131.

    Google Scholar 

  32. Blom, N., Sicheritz-Pontén, T., Gupta, R. et al., Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence, Proteomics, 2004 (4): 1633–1649.

  33. Hart, G. W., Dynamic O-linked glycosylation of nuclear and cytoskeletal proteins, Annu. Rev. Biochem., 1997, 66: 315–335.

    Article  Google Scholar 

  34. Asker, N., Baeckstrom, D., Axelsson, M. et al., The human MUC2 mucin apoprotein appears to dimerize before O-glycosylation and shares epitopes with the ‘insoluble’ mucin of rat small intestine, Biochem. J., 1995, 308: 873–880.

    Google Scholar 

  35. Roth, J., Wang, Y., Eckhardt, A. E. et al., Differential expression of cell surface sialoglycoconjugates on wild-type and cultured ehrlich tumor cells as revealed by quantitative lectin-gold ultrastructural cytochemistry, Proc. Natl. Acad. Sci. USA, 1994, 91: 8935–8939.

    Google Scholar 

  36. Gavel, Y., von Heijne, G., Statistical studies of N-glycosylated proteins have indicated that the frequency of nonglycosylated Asn-Xaa-(Thr/Ser) sequons increases toward the C terminus, Protein. Eng., 1990, 3: 433–442.

    Google Scholar 

  37. Krokhin, O., Ens W., Standing, K. G. et al., Site-specific N-glycosylation analysis: matrix-assisted laser desorption/ionization quadrupole-quadrupole time-of-flight tandem mass spectral signatures for recognition and identification of glycopeptides, Rapid Commun. Mass Spectrom., 2004 (18): 2020–2030.

  38. Zhang, Z. W., Gildersleeve, J., Yang Y. Y. et al., A new strategy for the synthesis of glycoproteins, Science, 2004, 303: 371–373.

    Google Scholar 

  39. Szymanski, C. M., Logan, S. M., Linton, D. et al., Campylobacter—a tale of two protein glycosylation systems, Trends in Microbiology, 2003, 11(5): 233–238.

    Google Scholar 

  40. Cassey, P. J., Protein lopidation in cell signaling, Science, 1995, 268: 221–225.

    Google Scholar 

  41. Comer, F. I., Hart, G. W., O-glycosylation of nuclear and cytosolic proteins, The Journal of Biological Chemistry, 2000, 275(38): 29179–29182.

    Article  Google Scholar 

  42. van Rensburg, S. J., Berman, P., Potocnik, F. et al., 5 and 6-glycosylation of transferrin in patients with Alzheimer’s disease, Metabolic Brain Disease, 2004, 19(1–2): 89–96.

    Google Scholar 

  43. Muntoni, F., Brockington, M., Torelli, S. et al., Defective glycosylation in congenital muscular dystrophies, Current Opinion in Neurology, 2004, 17(2): 205–209.

    Article  Google Scholar 

  44. Dwek, R. A., Butters, T. D., Platt, F. M. et al., Targeting glycosylation as a therapeutic approach, Nature Reviews Drug Discovery, 2002, 1(1): 65–75.

    Article  Google Scholar 

  45. Bader, B., Kuhn, K., Owen, D. J. et al., Bioorganic synthesis of lipid-modified proteins for the study of signal transduction, Nature, 2000, 403: 223–226.

    Google Scholar 

  46. Völkert, M., Uwai, K., Tebbe, A. et al., Synthesis and biological activity of photoactivatable N-Ras peptides and proteins, J. Am. Chem. Soc., 2003, 125: 12749–12758.

    Google Scholar 

  47. Peters, C., Wagner, M., Völkert, M. et al., Bridging the gap between cell biology and organic chemistry: chemical synthesis and biological application of lipidated peptides and proteins, Naturwissenschaften, 2002, 89: 381–390.

    Article  Google Scholar 

  48. Thutewohl, M., Kissau, L., Popkirova, B. et al., Identification of mono-and bisubstrate inhibitors of protein farnesyltransferase and inducers of apoptosis from a pepticinnamin E library, Bioorganic & Medicinal Chemistry, 2003, 11: 2617–2626.

    Google Scholar 

  49. Trievel, R. C., Structure and function of histone methyltransferases, Critical Reviews in Eukaryotic Gene Expression, 2004, 14(3): 147–169.

    Article  Google Scholar 

  50. Sims III, R. J., Nishioka, K., Reinberg, D., Histone lysine methylation: a signature for chromatin function, Trends in Genetics, 2003, 19(11): 629–639.

    Article  Google Scholar 

  51. Tamaru, H., Selker, E. U., A histone H3 methyltransferase controls DNA methylation in Neurospora crassa, Nature, 2001, 414(6861): 277–283.

    Article  Google Scholar 

  52. Jackson, J. P., Lindroth, A. M., Cao, X. F. et al., Control of CpNpG methylation by the KRYPTONITE histone H3 methyltransferase, Nature, 2002, 416: 556–560.

    Article  Google Scholar 

  53. Shi, Y., Lan, F., Matson, C. et al., Histone demethylation mediated by the nuclear amine Oxidase Homolog LSD1, Cell, 2004, 119(7): 941–953.

    Article  Google Scholar 

  54. Cuthbert, G. L., Daujat, S., Snowden, A. W. et al., Histone deimination antagonizes arginine methylation, Cell, 2004, 118(5): 545–553.

    Article  Google Scholar 

  55. Wang, Y., Wysocka, J., Sayegh, J. et al., Human PAD4 regulates histone arginine methylation levels via demethylimination, Science, 2004, 306(5694): 279–283.

    Article  Google Scholar 

  56. Trojer, P., Dangl, M., Bauer, I. et al., Histone methyltransferases in Aspergillus nidulans: evidence for a novel enzyme with a unique substrate specificity, Biochemistry, 2004, 43: 10834–10843.

    Article  Google Scholar 

  57. Chuikov, S., Kurash, J. K., Wilson, J. R. et al., Regulation of p53 activity through lysine methylation, Nature, 2004, 432: 353–360.

    Article  Google Scholar 

  58. Hansen, J. C., Tse, C., Wolffe, A. P., Structure and function of the core histone N-termini:more than meets the eye, Biochemistry, 1998, 37: 17637–17641.

    Google Scholar 

  59. Walia, H., Chen, H. Y., Sun J. M. et al., Histone acetylation is required to maintain the unfolded nucleosome structure associated with transcribing DNA, J. Biol. Chem., 1998, 17: 2865–2876.

    Google Scholar 

  60. Waterborg, J. H., Dynamics of histone acetylation in vivo. A function for acetylation turnover? Biochemistry and Cell Biology, 2002, 80(3): 363–378.

    Google Scholar 

  61. Bodai, L., Pallos, J., Thompson, L. M. et al., Altered protein acetylation in polyglutamine diseases, Current Medicinal Chemistry, 2003, 10(23): 2577–2587.

    Article  Google Scholar 

  62. McMurry, M. T., Krangel, M. S., A role for histone acetylation in the developmental regulation of V(D)J recombination, Science, 2000, 287: 495–498.

    Article  Google Scholar 

  63. Hubbert, C., Amaris, G., Shao, R. et al., HDAC6 is a microtubule-associated deacetylase, Nature, 2002, 417(6887): 455–458.

    Article  Google Scholar 

  64. Palazzo, A., Ackerman, B., Gundersen, G. G., Tubulin acetylation and cell motility, Nature, 2003, 421: 230.

    Article  Google Scholar 

  65. Nguyen, D. X., Baglia, L. A., Huang, S. M. et al., Acetylation regulates the differentiation-specific functions of the retinoblastoma protein, The EMBO Journal, 2004, 23(7): 1609–1618.

    Article  Google Scholar 

  66. Qian, W., Lu, F., Zhu, L. et al., Influence of protein O-GlcNAcylation to protein phosphorylation on Tau protein, Prog. Biochem. Biophys. (in Chinese), 2003, 30(4): 623–628.

    Google Scholar 

  67. Rice, J. C., Allis, C. D., Histone methylation versus histone acetylation:new insights into epigenetic regulation, Current Opinion in Cell Biology, 2001, 13: 263–273.

    Article  Google Scholar 

  68. Benjamin, G. D., Mimicking posttranslational modifications of proteins, Science, 2004, 303: 480–482.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yanmei.

About this article

Cite this article

Hu, J., Guo, Y. & Li, Y. Research progress in protein post-translational modification. CHINESE SCI BULL 51, 633–645 (2006). https://doi.org/10.1007/s11434-006-0633-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-006-0633-3

Keywords

Navigation