Skip to main content

Protein Post-translational Modifications: Role in Protein Structure, Function and Stability

  • Chapter
Proteostasis and Chaperone Surveillance

Abstract

Protein synthesis and its folding to form quaternary structures are generally not sufficient to produce a functional protein. Proteins, soon after their translation, are often modified to achieve proper folding and localization. Some of the post-translational modifications include proteolytic cleavage, addition of prosthetic groups and addition of functional groups like phosphoryl, acetyl or methyl groups, the latter being reversible, and constitute an important role in modulating the activity of the protein. Post-translational modifications of proteins also regulate their stability as well as interactions with other proteins and macromolecules. Identification and understanding of the functions performed by the modified proteins is critical in the study of cellular homeostasis. It may provide new drug targets and also offer candidates for biomarker selection involved in chronic diseases. This chapter describes various post-translational modifications that occur in proteins and some of the key biological functions and signalling pathways controlled by these modifications in a living cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Becker S, Groner B, Müller CW (1998) Three-dimensional structure of the Stat3beta homodimer bound to DNA. Nature 394(6689):145–151

    Article  CAS  PubMed  Google Scholar 

  • Biscardi JS, Maa MC, Tice DA, Cox ME, Leu TH, Parsons SJ (1999) c-Src-mediated phosphorylation of the epidermal growth factor receptor on Tyr845 and Tyr1101 is associated with modulation of receptor function. J Biol Chem 274(12):8335–8343

    Article  CAS  PubMed  Google Scholar 

  • Blais A, Dynlacht BD (2007) E2F-associated chromatin modifiers and cell cycle control. Curr Opin Cell Biol 19(6):658–662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY, Allis CD (1996) Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84(6):843–851

    Article  CAS  PubMed  Google Scholar 

  • Buschmann T, Adler V, Matusevich E, Fuchs SY, Ronai Z (2000) p53 phosphorylation and association with murine double minute 2, c-Jun NH2-terminal kinase, p14ARF, and p300/CBP during the cell cycle and after exposure to ultraviolet irradiation. Cancer Res 60:896–900

    CAS  PubMed  Google Scholar 

  • Carr SM, Munro S, La Thangue NB (2012) Lysine methylation and the regulation of p53. Essays Biochem 52:79–92

    Article  CAS  PubMed  Google Scholar 

  • Chuikov S, Kurash JK, Wilson JR, Xiao B, Justin N, Ivanov GS, McKinney K, Tempst P, Prives C, Gamblin SJ, Barlev NA, Reinberg D (2004) Regulation of p53 activity through lysine methylation. Nature 432:353–360

    Article  CAS  PubMed  Google Scholar 

  • Clarke SG (2013) Protein methylation at the surface are buried deep: thinking outside the histone box. Trends Biochem Sci 38(5):243–252

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dai C, Gu W (2010) p53 post-translational modification: deregulated in tumorigenesis. Trends Mol Med 16(11):528–536

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deribe YL, Pawson T, Dikic I (2010) Post-translational modifications in signal integration. Nat Struct Mol Biol 17(6):666–672

    Article  CAS  PubMed  Google Scholar 

  • Glozak MA, Sengupta N, Zhang X, Seto E (2005) Acetylation and deacetylation of non-histone proteins. Gene 363:15–23

    Article  CAS  PubMed  Google Scholar 

  • Gospodinov A, Herceg Z (2013) Chromatin structure in double strand break repair. DNA Repair (Amst) 12(10):800–810

    Article  CAS  Google Scholar 

  • Grandinetti KB, David G (2008) Sin3B: an essential regulator of chromatin modifications at E2F target promoters during cell cycle withdrawal. Cell Cycle 7(11):1550–1554

    Article  CAS  PubMed  Google Scholar 

  • Grant PA (2001) A tale of histone modifications. Genome Biol 2(4):Reviews 0003

    Google Scholar 

  • Gu B, Zhu WG (2012) Surf the post-translational modification network of p53 regulation. Int J Biol Sci 8(5):672–684

    Article  PubMed Central  PubMed  Google Scholar 

  • Haj FG, Verveer PJ, Squire A, Neel BG, Bastiaens PI (2002) Imaging sites of receptor dephosphorylation by PTP1B on the surface of the endoplasmic reticulum. Science 295(5560):1708–1711

    Article  CAS  PubMed  Google Scholar 

  • Hon WC, Wilson MI, Harlos K, Claridge TD, Schofield CJ, Pugh CW, Maxwell PH, Ratcliffe PJ, Stuart DI, Jones EY (2002) Structural basis for the recognition of hydroxyproline in HIF-1 alpha by pVHL. Nature 417(6892):975–978

    Article  CAS  PubMed  Google Scholar 

  • Huen MS, Grant R, Manke I, Minn K, Yu X, Yaffe MB, Chen J (2007) RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell 131(5):901–914

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ianari A, Gallo R, Palma M, Alesse E, Gulino A (2004) Specific role for p300/CREB-binding protein-associated factor activity in E2F1 stabilization in response to DNA damage. J Biol Chem 279:30830–30835

    Article  CAS  PubMed  Google Scholar 

  • Jeong JW, Bae MK, Ahn MY, Kim SH, Sohn TK, Bae MH, Yoo MA, Song EJ, Lee KJ, Kim KW (2002) Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell 111:709–720

    Article  CAS  PubMed  Google Scholar 

  • Johnson LN, Lewis RJ (2001) Structural basis for control by phosphorylation. Chem Rev 101:2209–2242

    Article  CAS  PubMed  Google Scholar 

  • Khorasanizadeh S (2004) The nucleosome: from genomic organization to genomic regulation. Cell 116(2):259–272

    Article  CAS  PubMed  Google Scholar 

  • Kirkland JG, Kamakaka RT (2013) Long-range heterochromatin association is mediated by silencing and double-strand DNA break repair proteins. J Cell Biol 201(6):809–826

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klein RR, Houtz RL (1995) Cloning and developmental expression of pea ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit N-methyltransferase. Plant Mol Biol 27:249–261

    Article  CAS  PubMed  Google Scholar 

  • Knights CD, Catania J, Di Giovanni S, Muratoglu S, Perez R, Swartzbeck A, Quong AA, Zhang X, Beerman T, Pestell RG, Avantaggiati ML (2006) Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. J Cell Biol 173:533–544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Knorre DG, Kudryashova NV, Godovikova TS (2009) Chemical and functional aspects of posttranslational modification of proteins. Acta Nat 1(3):29–51

    CAS  Google Scholar 

  • Kolas NK, Chapman JR, Nakada S, Ylanko J, Chahwan R, Sweeney FD et al (2007) Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science 318(5856):1637–1640

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kruse JP, Gu W (2009) Modes of p53 regulation. Cell 137:609–622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee TI, Young RA (2000) Transcription of eukaryotic protein-coding genes. Annu Rev Genet 34:77–137

    Article  CAS  PubMed  Google Scholar 

  • Liang MD, Zhang Y, McDevit D, Marecki S, Nikolajczyk BS (2006) The interleukin-1beta gene is transcribed from a poised promoter architecture in monocytes. J Biol Chem 281:9227–9237

    Article  CAS  PubMed  Google Scholar 

  • Lindner HH (2008) Analysis of histones, histone variants, and their post-translationally modified forms. Electrophoresis 29(12):2516–2532

    Article  CAS  PubMed  Google Scholar 

  • Mailand N, Bekker-Jensen S, Faustrup H, Melander F, Bartek J, Lukas C, Lukas J (2007) RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell 131:887–900

    Article  CAS  PubMed  Google Scholar 

  • Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298(5600):1912–1934

    Article  CAS  PubMed  Google Scholar 

  • Marmorstein R, Zhou MM (2014) Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb Perspect Biol 6(7):a018762

    Article  PubMed  Google Scholar 

  • Marshall MS (1995) Ras target proteins in eukaryotic cells. FASEB J 9:1311–1318

    CAS  PubMed  Google Scholar 

  • Matsumoto M, Furihata M, Ohtsuki Y (2006) Posttranslational phosphorylation of mutant p53 protein in tumor development. Med Mol Morphol 39:79–87

    Article  CAS  PubMed  Google Scholar 

  • Meek DW, Anderson CW (2009) Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb Perspect Biol 1(6):a000950

    Article  PubMed Central  PubMed  Google Scholar 

  • Naudé PJ, den Boer JA, Luiten PG, Eisel UL (2011) Tumor necrosis factor receptor cross-talk. FEBS J 278(6):888–898

    Article  PubMed  Google Scholar 

  • Paik WK, Paik DC, Kim S (2007) Historical review: the field of protein methylation. Trends Biochem Sci 32(3):146–152

    Article  CAS  PubMed  Google Scholar 

  • Pawson T (2002) Regulation and targets of receptor tyrosine kinases. Eur J Cancer Suppl 5:S3–S10

    Article  Google Scholar 

  • Petty E, Pillus L (2013) Balancing chromatin remodeling and histone modifications in transcription. Trends Genet 29(11):621–629

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saito S, Yamaguchi H, Higashimoto Y, Chao C, Xu Y, FornaceJr AJ, Appella E, Anderson CW (2003) Phosphorylation site interdependence of human p53 post-translational modifications in response to stress. J Biol Chem 278:37536–37544

    Article  CAS  PubMed  Google Scholar 

  • Sarg B, Chwatal S, Talasz H, Lindner HH (2009) Testis-specific linker histone H1t is multiply phosphorylated during spermatogenesis. Identification of phosphorylation sites. J Biol Chem 284(6):3610–3618

    Article  CAS  PubMed  Google Scholar 

  • Schotta G, Sengupta R, Kubicek S, Malin S, Kauer M, Callen E, Celeste A, Pagani M, Opravil S, De La Rosa-Velazquez IA, Espejo A, Bedford MT, Nussenzweig A, Busslinger M, Jenuwein T (2008) A chromatin-wide transition to H4K20 monomethylation impairs genome integrity and programmed DNA rearrangements in the mouse. Genes Dev 22:2048–2061

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sykes SM, Stanek TJ, Frank A, Murphy ME, McMahon SB (2009) Acetylation of the DNA binding domain regulates transcription-independent apoptosis by p53. J Biol Chem 284:20197–20205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thomson S, Mahadevan LC, Clayton AL (1999) MAP kinase-mediated signalling to nucleosomes and immediate-early gene induction. Semin Cell Dev Biol 10:205–214

    Article  CAS  PubMed  Google Scholar 

  • Toledo F, Wahl GM (2006) Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 6:909–923

    Article  CAS  PubMed  Google Scholar 

  • Walsh C, Garneau-Tsodikova S, Gatto GJ (2005) Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed 44:7342–7372

    Article  CAS  Google Scholar 

  • Wu H, Moshkina N, Min J, Zeng H, Joshua J, Zhou MM, Plotnikov AN (2012) Structural basis for substrate specificity and catalysis of human histone acetyltransferase 1. Proc Natl Acad Sci 109:8925–8930

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu Y (2003) Regulation of p53 responses by post-translational modifications. Cell Death Differ 10:400–403

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Lu S, Wu L, Chai G, Wang H, Chen Y, Sun J, Yu Y, Zhou W, Zheng Q, Wu M, Otterson GA, Zhu WG (2006) Acetylation of p53 at lysine 373/382 by the histone deacetylase inhibitor depsipeptide induces expression of p21Waf1/Cip1. Mol Cell Biol 26:2782–2790

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daman Saluja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Mittal, S., Saluja, D. (2015). Protein Post-translational Modifications: Role in Protein Structure, Function and Stability. In: Singh, L.R., Dar, T.A., Ahmad, P. (eds) Proteostasis and Chaperone Surveillance. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2467-9_2

Download citation

Publish with us

Policies and ethics