Skip to main content
Log in

Radiation-pressure-driven mechanical oscillations in silica microdisk resonators on chip

  • Article
  • Special Topic: Optomechanics
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We demonstrate radiation-pressure-driven mechanical oscillations from high optical quality factor silica microdisk resonators on chip. Mechanical quality factors of 3520 in air and 12540 in vacuum for the fundamental radial breathing modes are obtained from 73 μm-diameter silica microdisks with mechanical frequencies of ∼51 MHz. The measured mechanical oscillation threshold powers for the input light are determined to be 62.5 μW in air and down to 26.6 μW in vacuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vahala K J. Optical microcavities. Nature, 2003, 424: 839–846

    Article  ADS  Google Scholar 

  2. Craighead H G. Nanoelectromechanical systems. Science, 2000, 290: 1532–1535

    Article  ADS  Google Scholar 

  3. Kippenberg T J, Vahala K J. Cavity opto-mechanics. Opt Express, 2007, 15: 17172–17205

    Article  ADS  Google Scholar 

  4. Metcalfe M. Applications of cavity optomechanics. Appl Phys Rev, 2014, 1: 031105

    Article  Google Scholar 

  5. Aspelmeyer M, Kippenberg T J, Marquardt F, et al. Cavity optomechanics. Rev Mod Phys, 2014, 86: 1391–1452

    Article  ADS  Google Scholar 

  6. Thompson J D, Zwickl B M, Jayich A M, et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature, 2008, 452: 72–75

    Article  ADS  Google Scholar 

  7. Rokhsari H, Kippenberg T J, Carmon T, et al. Radiation-pressure-driven micro-mechanical oscillator. Opt Express, 2005, 13: 5293–5301

    Article  ADS  Google Scholar 

  8. Carmon T, Rokhsari H, Yang L, et al. Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. Phys Rev Lett, 2005, 94: 223902

    Article  ADS  Google Scholar 

  9. Kippenberg T J, Rokhsari H, Carmon T, et al. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys Rev Lett, 2005, 95: 033901

    Article  ADS  Google Scholar 

  10. Eichenfield M, Chan J, Camacho R M, et al. Optomechanical crystals. Nature, 2009, 462: 78–82

    Article  ADS  Google Scholar 

  11. Vahala K, Herrmann M, Knünz S, et al. A phonon laser. Nat Phys, 2009, 5: 682–686

    Article  Google Scholar 

  12. Grudinin I S, Lee H, Painter O, et al. Phonon laser action in a tunable two-level system. Phys Rev Lett, 2010, 104: 083901

    Article  ADS  Google Scholar 

  13. Braginsky V B, Strigin S E, Vyatchanin S P, et al. Parametric oscillatory instability in Fabry-Perot interferometer. Phys Lett A, 2001, 287: 331–338

    Article  ADS  Google Scholar 

  14. Carmon T, Vahala K J. Modal spectroscopy of optoexcited vibrations of a micron-scale on-chip resonator at greater than 1 GHz frequency. Phys Rev Lett, 2007, 98: 12390

    Google Scholar 

  15. Park Y S, Wang H. Radiation pressure driven mechanical oscillation in deformed silica microspheres via free-space evanescent excitation. Opt Express, 2007, 15: 16471–16477

    Article  ADS  Google Scholar 

  16. Zheng J J, Li Y, Aras M S, et al. Parametric optomechanical oscillations in two-dimensional slot-type high-Q photonic crystal cavities. Appl Phys Lett, 2012, 100: 211908

    Article  ADS  Google Scholar 

  17. Jiang W C, Lu X Y, Zhang J D, et al. High-frequency silicon optomechanical oscillator with an ultralow threshold. Opt Express, 2012, 20: 15991–15996

    Article  Google Scholar 

  18. Jiang X S, Lin Q, Rosenberg J, et al. High-Q double-disk microcavities for cavity optomechanics. Opt Express, 2009, 17: 20911–20919

    Article  ADS  Google Scholar 

  19. Lin Q, Rosenberg J, Jiang X S, et al. Mechanical oscillation and cooling actuated by the optical gradient force. Phys Rev Lett, 2009, 103: 103601

    Article  ADS  Google Scholar 

  20. Anetsberger G, Arcizet O, Unterreithmeier Q P, et al. Near-field cavity optomechanics with nanomechanical oscillators. Nat Phys, 2009, 5: 909–914

    Article  Google Scholar 

  21. Kippenberg T J, Kalkman J, Polman A, et al. Demonstration of an erbium-doped microdisk laser on a silicon chip. Phys Rev A, 2006, 74: 051802

    Article  ADS  Google Scholar 

  22. Lee H, Chen T, Li J, et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat Photonics, 2012, 6: 369–373

    Article  ADS  Google Scholar 

  23. Anetsberger G, Rivière R, Schliesser A, et al. Ultralow-dissipation optomechanical resonators on a chip. Nat Photonics, 2008, 2: 627–633

    Article  Google Scholar 

  24. Knight J C, Cheung G, Jacques F, et al. Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper. Opt Lett, 1997, 22: 1129–1131

    Article  ADS  Google Scholar 

  25. Cai M, Painter O, Vahala K J, et al. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys Rev Lett, 2000, 85: 74–77

    Article  ADS  Google Scholar 

  26. Rokhsari H, Kippenberg T J, Carmon T, et al. Theoretical and experimental study of radiation pressure-induced mechanical oscillations (parametric instability) in optical microcavities. IEEE J Sel Top Quantum Electron, 2006, 12: 96–107

    Article  Google Scholar 

  27. Liu F F, Alaie S, Leseman Z C, et al. Sub-pg mass sensing and measurement with an optomechanical oscillator. Opt Express, 2013, 21: 19555–19567

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to XiaoShun Jiang or Min Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Zhao, M., Ma, J. et al. Radiation-pressure-driven mechanical oscillations in silica microdisk resonators on chip. Sci. China Phys. Mech. Astron. 58, 1–4 (2015). https://doi.org/10.1007/s11433-015-5649-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-015-5649-8

Keywords

Navigation