Skip to main content
Log in

Silicon Vibrating Micro-Wire Resonators for Study of Quantum Turbulence in Superfluid \(^{4}\)He

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We report a fabrication process and characterization measurements of single crystal silicon micro-wire resonators to be used for study of quantum turbulence in superfluid \(^{4}\)He at millikelvin temperatures. Our devices are single standing goal-post-shaped silicon structures with a width and height of the order of 7 microns. Vapour-deposited superconducting aluminium film of 120 nm thickness is used for magneto-motive drive of the resonators. In the window of each chip, two such devices of different dimensions are placed 30 µm to 1 mm apart, with the intent to study interaction due to pinned quantized vortices. With resonant frequencies below 10 kHz, the devices reach quality factors of \(\approx 2 \times 10^4\) in cold helium vapour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Skrbek, D. Schmoranzer, Š Midlik, K.R. Sreenivasan, Phenomenology of quantum turbulence in superfluid helium. PNAS 118, 16 (2021)

    Article  MathSciNet  Google Scholar 

  2. W.F. Vinen, M. Tsubota, A. Mitani, Kelvin-wave cascade on a vortex in superfluid He-4 at a very low temperature. PRL 91(13), 135301 (2003)

    Article  ADS  Google Scholar 

  3. D.I. Bradley, R. George, A.M. Guenault et al., Operating Nanobeams in a Quantum Fluid. Sci. Rep. 7, 4876 (2017)

    Article  ADS  Google Scholar 

  4. T. Kamppinen, V.B. Eltsov, Nanomechanical resonators for cryogenic research. JLTP 196, 283–292 (2019)

    Article  ADS  Google Scholar 

  5. C.S. Barquist, W.G. Jiang, K. Gunther et al., Damping of a microelectromechanical oscillator in turbulent superfluid 4He: a probe of quantized vorticity in the ultralow temperature regime. PRB 101, 174513 (2020)

    Article  ADS  Google Scholar 

  6. A. Guthrie, S. Kafanov, M.T. Noble et al., Nanoscale real-time detection of quantum vortices at millikelvin temperatures. Nat. Commun. 12, 1 (2021)

    Article  Google Scholar 

  7. M. Defoort, K.J. Lulla, T. Crozes et al., Slippage and boundary layer probed in an almost ideal gas by a nanomechanical oscillator. PRL 113, 136101 (2014)

    Article  ADS  Google Scholar 

  8. M. Defoort, S. Dufresnes, S.L. Ahlstrom et al., Probing bogoliubov quasiparticles in superfluid 3He with a ‘vibrating-wire like’ MEMS device. JLTP 183, 284–291 (2016)

    Article  ADS  Google Scholar 

  9. M. Defoort, K.J. Lulla, C. Blanc et al., Modal “self-coupling’’ as a sensitive probe for nanomechanical detection. Appl. Phys. Lett. 103(1), 013104 (2013)

    Article  ADS  Google Scholar 

  10. D. Schmoranzer, M. La Mantia, G. Sheshin et al., Acoustic emission by quartz tuning forks and other oscillating structures in cryogenic 4He fluids. JLTP 163, 317–344 (2011)

    Article  ADS  Google Scholar 

  11. D.I. Bradley, M. Človečko, S.N. Fisher et al., Crossover from hydrodynamic to acoustic drag on quartz tuning forks in normal and superfluid 4He. PRB 85, 014501 (2012)

    Article  ADS  Google Scholar 

  12. A.M. Guénault, R.P. Haley, S. Kafanov et al., Acoustic damping of quartz tuning forks in normal and superfluid 3He. PRB 100, 104526 (2019)

    Article  ADS  Google Scholar 

  13. E. Collin, L. Filleau, T. Fournier, Y.M. Bunkov, H. Godfrin, Silicon vibrating wires at low temperatures. JLTP 150, 739–790 (2008)

    Article  ADS  Google Scholar 

  14. F. Laerme, A. Schilp, K. Funk, M. Offenberg, Technical digest, in IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (1999) 211–216. https://doi.org/10.1109/MEMSYS.1999.746812.

  15. M.A. Hopcroft, W.D. Nix, T.W. Kenny, Systems. J. Microelectromech. 19, 229 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the Czech Science Foundation project GAČR20-13001Y. CzechNanoLab project LM2018110 funded by MEYS CR is gratefully acknowledged for the financial support of the sample fabrication at CEITEC Nano Research Infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Šimon Midlik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Midlik, Š., Sadílek, J., Xie, Z. et al. Silicon Vibrating Micro-Wire Resonators for Study of Quantum Turbulence in Superfluid \(^{4}\)He. J Low Temp Phys 208, 475–481 (2022). https://doi.org/10.1007/s10909-022-02675-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02675-2

Keywords

Navigation