Skip to main content
Log in

Vegetation physiological parameter setting in the Simple Biosphere model 2 (SiB2) for alpine meadows in the upper reaches of Heihe river

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Land surface process modeling of high and cold area with vegetation cover has not yielded satisfactory results in previous applications. In this study, land surface energy budget is simulated using a land surface model for the A’rou meadow in the upper-reach area of the Heihe River Basin in the eastern Tibetan Plateau. The model performance is evaluated using the in-situ observations and remotely sensed data. Sensible and soil heat fluxes are overestimated while latent heat flux is underestimated when the default parameter setting is used. By analyzing physical and physiological processes and the sensitivities of key parameters, the inappropriate default setting of optimum growth and inhibition temperatures is identified as an important reason for the bias. The average daytime temperature during the period of fastest vegetation growth (June and July) is adopted as the optimum growth temperature, and the inhibition temperatures were adjusted using the same increment as the optimum temperature based on the temperature acclimation. These adjustments significantly reduced the biases in sensible, latent, and soil heat fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Badger M R, Bjorkman O, Armond P A. 1982. An analysis of photosynthetic response and adaptation to temperature in higher plants: Temperature acclimation in the desert evergreen Nerium oleander L. Plant Cell Environ, 5: 85–99

    Google Scholar 

  • Berry J, Bjorkman O. 1980. Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol, 31: 491–543

    Article  Google Scholar 

  • Chen Y Y, Yang K, He J, et al. 2011. Improving land surface temperature modeling for dry land of China. J Geophys Res, 116: D20104, doi: 10.1029/2011jd015921

    Article  Google Scholar 

  • Chen Y Y, Yang K, Tang W J, et al. 2012. Parameterizing soil organic carbon’s impacts on soil porosity and thermal parameters for eastern Tibet grasslands. Sci China Earth Sci, 55: 1001–1011

    Article  Google Scholar 

  • Chen Y Y, Yang K, Zhou D, et al. 2010. Improving the Noah land surface model in arid regions with an appropriate parameterization of the thermal roughness length. J Hydrometeorol, 11: 995–1006

    Article  Google Scholar 

  • Crow W T, Wood E F, Pan M. 2003. Multiobjective calibration of land surface model evapotranspiration predictions using streamflow observations and spaceborne surface radiometric temperature retrievals. J Geophys Res, 108: D234725, doi: 10.1029/2002jd003292

    Google Scholar 

  • Cui Y P. 2013. Preliminary estimation of the realistic optimum temperature for vegetation growth in China. Environ Manage, 52: 151–162

    Article  Google Scholar 

  • Duan Q, Sorooshian S, Gupta H V. 1992. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res, 28: 1015–1031

    Article  Google Scholar 

  • Fan Z X, Bräuning A, Yang B, et al. 2009. Tree ring density-based summer temperature reconstruction for the central Hengduan Mountains in southern China. Glob Planet Change, 65: 1–11

    Article  Google Scholar 

  • Field C B, Randerson J T, Malmström C M. 1995. Global net primary production: Combining ecology and remote sensing. Remote Sens Environ, 51: 74–88

    Article  Google Scholar 

  • Gao Z Q, Bian L G, Cheng Y J, et al. 2002. Modeling of energy budget using Simple Biosphere Model version2 (SiB2) over Tibetan Naqu Prairie. J Appl Meterol Sci, 13: 129–141

    Google Scholar 

  • Gao Z Q, Chae N, Kim J, et al. 2004. Modeling of surface energy partitioning, surface temperature, and soil wetness in the Tibetan prairie using the Simple Biosphere Model 2 (SiB2). J Geophys Res, 109: D06102, doi: 10.1029/2003JD004089

    Google Scholar 

  • Gao Z Q, Chen G T J, Hu Y B. 2007. Impact of soil vertical water movement on the energy balance of different land surfaces. Int J Biometeorol, 51: 565–573

    Article  Google Scholar 

  • Gupta H V, Sorooshian S, Yapo P O. 1998. Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information. Water Resour Res, 34: 751–763

    Article  Google Scholar 

  • Hanan N P, Berry J A, Verma S B, et al. 2005. Testing a model of CO2, water and energy exchange in Great Plains tallgrass prairie and wheat ecosystems. Agric For Meteorol, 131: 162–179

    Article  Google Scholar 

  • Hong J, Kim J. 2010. Numerical study of surface energy partitioning on the Tibetan plateau: Comparative analysis of two biosphere models. Biogeosciences, 7: 557–568

    Article  Google Scholar 

  • Hu H P, Ye B S, Zhou Y H, et al. 2006. A land surface model incorporated with soil freeze/thaw and its application in GAME/Tibet. Sci China Ser D-Earth Sci, 49: 1311–1322

    Article  Google Scholar 

  • Koike T. 2004. The coordinated enhanced observing period-An initial step for integrated global water cycle observations. WMO Bull, 53: 115–121

    Google Scholar 

  • Koike T, Yasunari T, Wang J, et al. 1999. GAME-Tibet IOP summary report. In: Proceedings of the First International Workshop on GAME-Tibet, Xi’an, China. 1–2

    Google Scholar 

  • Kuczera G, Kavetski D, Renard B, et al. 2010. A limited-memory acceleration strategy for MCMC sampling in hierarchical Bayesian calibration of hydrological models. Water Resour Res, 46: W07602, doi: 10.1029/2009wr008985

    Article  Google Scholar 

  • Lambers H, Chapin III F S, Pons T L. 2008. Plant Physiological Ecology. New York: Springer

    Book  Google Scholar 

  • Li Q, Sun S F. 2008. Development of the universal and simplified soil model coupling heat and water transport. Sci China Ser D-Earth Sci, 51: 88–102

    Article  Google Scholar 

  • Li Q, Sun S F, Xue Y K. 2010. Analyses and development of a hierarchy of frozen soil models for cold region study. J Geophys Res, 115: D03107, doi: 10.1029/2009jd012530

    Google Scholar 

  • Li X, Cheng G D, Liu S M, et al. 2013. Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific objectives and experimental design. Bull Amer Meteorol Soc, 94: 1145–1160

    Article  Google Scholar 

  • Li X, Koike T. 2003. Frozen soil parameterization in SiB2 and its validation with GAME-Tibet observations. Cold Reg Sci Technol, 36: 165–182

    Article  Google Scholar 

  • Li X, Li X W, Li Z Y, et al. 2009. Watershed allied telemetry experimental research. J Geophys Res, 114: D22103, doi: 10.1029/2008jd011590

    Article  Google Scholar 

  • Li Z S, Zhang Q B, Ma K P. 2012. Tree-ring reconstruction of summer temperature for A.D. 1475-2003 in the central Hengduan Mountains, Northwestern Yunnan, China. Clim Change, 110: 455–467

    Article  Google Scholar 

  • Liu S M, Xu Z W, Wang W Z, et al. 2011. A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrol Earth Syst Sci, 15: 1291–1306

    Article  Google Scholar 

  • Ma Y M, Kang S C, Zhu L P, et al. 2008. ROOF OF THE WORLD: Tibetan observation and research platform Atmosphere-Land interaction over a heterogeneous landscape. Bull Amer Meteorol Soc, 89: 1487–1492

    Article  Google Scholar 

  • McCabe M F, Franks S W, Kalma J D. 2005. Calibration of a land surface model using multiple data sets. J Hydrol, 302: 209–222

    Article  Google Scholar 

  • Prihodko L, Denning A S, Hanan N P, et al. 2008. Sensitivity, uncertainty and time dependence of parameters in a complex land surface model. Agric For Meteorol, 148: 268–287

    Article  Google Scholar 

  • Qiu J. 2008. China: The third pole. Nature, 454: 393–396

    Article  Google Scholar 

  • Rosolem R, Shuttleworth W J, Zeng X, et al. 2010. Land surface modeling inside the Biosphere 2 tropical rain forest biome. J Geophys Res, 115: G04035, doi: 10.1029/2010jg001443

    Google Scholar 

  • Scott D. 1970. Relative growth rates under controlled temperatures of some New Zealand indigenous and introduced grasses. New Zeal J Bot, 8: 76–81

    Article  Google Scholar 

  • Seemann J R, Berry J A, Downton W J S. 1984. Photosynthetic response and adaptation to high temperature in desert plants. Plant Physiol, 75: 364–368

    Article  Google Scholar 

  • Sellers P J, Los S O, Tucker C J, et al. 1996a. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part II: The generation of global field of terrestrial biophysical parameters from satellite data. J Clim, 9: 706–737

    Article  Google Scholar 

  • Sellers P J, Randall D A, Collatz G J, et al. 1996b. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. J Clim, 9: 676–705

    Article  Google Scholar 

  • Sen O L, Shuttleworth W J, Yang Z L. 2000. Comparative evaluation of BATS2, BATS, and SiB2 with Amazon data. J Hydrometeorol, 1: 135–153

    Article  Google Scholar 

  • Song J H, Kang H S, Byun Y H, et al. 2010. Effects of the Tibetan Plateau on the Asian summer monsoon: A numerical case study using a regional climate model. Int J Climatol, 30: 743–759

    Google Scholar 

  • Takayabu I, Takata K, Yamazaki T, et al. 2001. Comparison of the four land surface models driven by a common forcing data prepared from GAME/Tibet POP’97 products-snow accumulation and soil freezing processes. J Meteorol Soc Jpn, 79: 535–554

    Article  Google Scholar 

  • Troy T J, Wood E F, Sheffield J. 2008. An efficient calibration method for continental-scale land surface modeling. Water Resour Res, 44: W09411, doi: 10.1029/2007wr006513

    Article  Google Scholar 

  • van der Velde R, Su Z, Ek M, et al. 2009. Influence of thermodynamic soil and vegetation parameterizations on the simulation of soil temperature states and surface fluxes by the Noah LSM over a Tibetan plateau site. Hydrol Earth Syst Sci, 13: 759–777

    Article  Google Scholar 

  • Vrugt J A, ter Braak C J F, Clark M P, et al. 2008. Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation. Water Resour Res, 44: W00B09, doi: 10.1029/2009wr008985

    Article  Google Scholar 

  • Wang Q J. 1991. The genetic algorithm and its application to calibrating conceptual Rainfall-Runoff Models. Water Resour Res, 27: 2467–2471

    Article  Google Scholar 

  • Watanabe T, Kondo J. 1990. The influence of canopy structure and density upon the mixing length within and above vegetation. J Meteorol Soc Jpn, 68: 227–235

    Google Scholar 

  • Wilson K, Goldstein A, Falge E, et al. 2002. Energy balance closure at FLUXNET sites. Agric For Meteorol, 113: 223–243

    Article  Google Scholar 

  • Xu G B, Chen T, Liu X H, et al. 2011. Summer temperature variations recorded in tree-ring δ 13C values on the northeastern Tibetan Plateau. Theor Appl Climatol, 105: 51–63

    Article  Google Scholar 

  • Xu X D, Zhang R H, Shi X H, et al. 2008. A new integrated observational system over the Tibetan Plateau. Bull Amer Meteorol Soc, 89: 1492–1496

    Article  Google Scholar 

  • Yanai M, Li C F, Song Z S. 1992. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J Meteorol Soc Jpn, 70: 319–351

    Google Scholar 

  • Yang K, Chen Y Y, Qin J. 2009. Some practical notes on the land surface modeling in the Tibetan Plateau. Hydrol Earth Syst Sci, 13: 687–701

    Article  Google Scholar 

  • Yang K, Koike T, Fujii H, et al. 2002. Improvement of surface flux parametrizations with a turbulence-related length. Q J R Meteorol Soc, 128: 2073–2087

    Article  Google Scholar 

  • Yang K, Koike T, Ishikawa H, et al. 2004. Analysis of the surface energy budget at a site of GAME/Tibet using a single-source model. J Meteorol Soc Jpn, 82: 131–153

    Article  Google Scholar 

  • Yang K, Koike T, Ye B S, et al. 2005. Inverse analysis of the role of soil vertical heterogeneity in controlling surface soil state and energy partition. J Geophys Res, 110: D08101, doi: 10.1029/2004jd005500

    Google Scholar 

  • Yang K, Wang J M. 2008. A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data. Sci China Ser D-Earth Sci, 38: 243–250

    Google Scholar 

  • Yasunari T J, Koster R D, Lau K M, et al. 2011. Influence of dust and black carbon on the snow albedo in the NASA Goddard Earth Observing System version 5 land surface model. J Geophys Res, 116: D02210, doi: 10.1029/2010jd014861

    Google Scholar 

  • Zhang G Z, Xu X D, Wang J Z. 2000. A dynamic study on PBL characteristics by’ 98 SCSMEX and TIPEX data. The Second Session of International Workshop on TIPEX-GAME/Tibet, Kunming, China. 58–60

    Google Scholar 

  • Zhou D G, Huang R H. 2012. Response of water budget to recent climatic changes in the source region of the Yellow River. Chin Sci Bull, 57: 2155–2162

    Article  Google Scholar 

  • Zhu G F, Su Y H, Li X, et al. 2013. Estimating actual evapotranspiration from an alpine grassland on Qinghai-Tibetan plateau using a two-source model and parameter uncertainty analysis by Bayesian approach. J Hydrol, 76: 42–51

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Li or Rui Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Sun, R. & Liu, S. Vegetation physiological parameter setting in the Simple Biosphere model 2 (SiB2) for alpine meadows in the upper reaches of Heihe river. Sci. China Earth Sci. 58, 755–769 (2015). https://doi.org/10.1007/s11430-014-4909-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-014-4909-1

Keywords

Navigation