Skip to main content
Log in

Isothermal crystallization of polypropylene/surface modified silica nanocomposites

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In the present work, 3-methacryloxypropyltrimethoxy-silane silanized silica (SiO2-WD70) and 9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide immobilized silica (SiO2-WD70-DOPO) nanoparticles were prepared. Silica, SiO2-WD70 and SiO2-WD70-DOPO were incorporated into polypropylene (PP) by melt compounding. Differential scanning calorimetry (DSC), X-ray diffraction (XRD) and polarized optical microscopy (POM) were employed to investigate the isothermal crystallization behavior of PP and PP/silica composites. The kinetic constant (k n ), and half crystallization time (t 1/2) were calculated by Avrami equation, while the surface free energy of folding was calculated by Lauritzen-Hoffman theory. The increased k n , decreased t 1/2 and the surface free energy (σ e) in the order of PP, PP/SiO2, PP/SiO2-WD70 and PP/SiO2-WD70-DOPO nanocomposites were attributed to the surface modification of silica. XRD indicated that SiO2-WD70-DOPO addition had no effect on PP crystal structure but accelerated the crystallization rate. POM determined that SiO2-WD70-DOPO addition promoted the nucleation of PP by inducing a higher nucleation density during isothermal conditions. The surface modified nanoparticle SiO2-WD70-DOPO might find possible application as a new type of inorganic nano-sized nucleation agent for PP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fukuyama Y, Kawai T, Kuroda S, Toyonaga M, Taniike T, Terano M. J Therm Anal Calorim, 2013, 113: 1511–1519

    Article  CAS  Google Scholar 

  2. Wu C, Zhang M, Rong M, Friedrich K. Compos Sci Tech, 2005, 65: 635–645

    Article  CAS  Google Scholar 

  3. Lu P. China Plastics Industry, 2010, 38: 25–28

    Google Scholar 

  4. Qian J, He P, Nie K. J Appl Polym Sci, 2004, 91: 1013–1019

    Article  CAS  Google Scholar 

  5. Durmus A, Kasgoz A, Ercan N, Akin D, Sanli S. Polymer, 2012, 53: 5347–5357

    Article  CAS  Google Scholar 

  6. Li J, Zhou C, Gang W. Polym Test, 2003, 22: 217–223

    Article  Google Scholar 

  7. Ning N, Yin Q, Luo F, Zhang Q, Du R, Fu Q. Polymer, 2007, 48: 7374–7384

    Article  CAS  Google Scholar 

  8. Razavi-Nouri M, Ghorbanzadeh-Ahangari M, Fereidoon A, Jahanshahi M. Polym Test, 2009, 28: 46–52

    Article  CAS  Google Scholar 

  9. Zhou Z, Wang S, Lu L, Zhang Y, Zhang Y. J Polym Sci B Polym Phys, 2007, 45: 1616–1624

    Article  CAS  Google Scholar 

  10. Naffakh M, Martín Z, Marco C, Gómez MA, Jiménez I. Thermochim Acta, 2008, 472: 11–16

    Article  CAS  Google Scholar 

  11. Yin J, Wang S, Zhang Y, Zhang Y. J Polym Sci B Polym Phys, 2005, 43: 1914–1923

    Article  CAS  Google Scholar 

  12. Jiang HB, Zhang XH, Qiao JL. Sci China Chem, 2012, 55: 1140–1147

    Article  CAS  Google Scholar 

  13. Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Walter R, Friedrich K. Polymer, 2001, 42: 167–183

    Article  CAS  Google Scholar 

  14. Dong Q, Ding Y, Wen B, Wang F, Dong H, Zhang S, Wang T, Yang M. Colloid Polym Sci, 2012, 290: 1371–1380

    Article  CAS  Google Scholar 

  15. Rong MZ, Zhang MQ, Pan SL, Friedrich K. Acta Polym Sin, 2004, 2: 184–190

    Google Scholar 

  16. Pipatchanchai T, Srikulkit K. J Sol-Gel Sci Technol, 2007, 44: 119–123

    Article  CAS  Google Scholar 

  17. Iiskola EI, Timonen S, Pakkanen TT, Härkki O, Lehmus P, Seppälä JV. Macromolecules, 1997, 30: 2853–2859

    Article  CAS  Google Scholar 

  18. Jin L, Horgan A, Levicky R. Langmuir, 2003, 19: 6968–6975

    Article  CAS  Google Scholar 

  19. Ke YC, Wu TB, Xia YF. Polymer, 2007, 48: 3324–3336

    Article  CAS  Google Scholar 

  20. He W, Wu D, Li J, Zhang K, Xiang Y, Long L, Qin S, Yu J, Zhang Q. Bull Korean Chem Soc, 2013, 34: 2747–2752

    Article  CAS  Google Scholar 

  21. Gun'ko VM, Voronin EF, Zarko VI, Pakhlov EM, Chuiko AA. J Adhes Sci Tech, 1997, 11: 627–653

    Article  Google Scholar 

  22. Kruk M, Asefa T, Coombs N, Jaroniec M, Ozin GA. J Mater Chem, 2002, 12: 3452–3457

    Article  CAS  Google Scholar 

  23. Gao X, Hu G, Qian Z, Ding Y, Zhang S, Wang D, Yang M. Polymer, 2007, 48: 7309–7315

    Article  CAS  Google Scholar 

  24. Zhang Y, Deng B, Liu Q. J Reinf Plas Comp, 2014, 33: 875–882

    Article  Google Scholar 

  25. Blagojevic SL, Buhin Z, Igrec I. J Appl Polym Sci, 2013, 129: 1466–1475

    Article  CAS  Google Scholar 

  26. Papageorgiou GZ, Achilias DS, Bikiaris DN, Karayannidis GP. Thermochim Acta, 2005, 427: 117–128

    Article  CAS  Google Scholar 

  27. Perret B, Schartel B, Stöß K, Ciesielski M, Diederichs J, Döring M, Krämer J, Altstädt V. Eur Polymer J, 2011, 47: 1081–1089

    Article  CAS  Google Scholar 

  28. Zhang W, Li X, Yang R. Polym Degrad Stabil, 2011, 96: 1821–1832

    Article  CAS  Google Scholar 

  29. Dong Q, Liu M, Ding Y, Wang F, Gao C, Liu P, Wen B, Zhang S, Yang M. Polym Adv Technol, 2013, 24: 732–739

    Article  CAS  Google Scholar 

  30. Chang SJ, Chang FC. J Appl Polym Sci, 1999, 72: 109–122

    Article  CAS  Google Scholar 

  31. Avrami M. J Chem Phys, 1939, 7: 1103–1112

    Article  CAS  Google Scholar 

  32. Avrami M. J Chem Phys, 1940, 8: 212–224

    Article  CAS  Google Scholar 

  33. Avrami M. J Chem Phys, 1941, 9: 177–184

    Article  CAS  Google Scholar 

  34. Clark EJ, Hoffman JD. Macromolecules, 1984, 17: 878–885

    Article  CAS  Google Scholar 

  35. Hoffman JD, Miller RL. Macromolecules, 1988, 21: 3038–3051

    Article  CAS  Google Scholar 

  36. Beck HN. J Appl Polym Sci, 1967, 11: 673–685

    Article  CAS  Google Scholar 

  37. Zhong Y, Zhang YQ, Yang JJ, Li WL, Wang ZG, Xu DH, Chen SY, Ding YS. Sci China Chem, 2013, 56: 181–194

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quanxiao Dong or Mingshu Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H., Dong, Q., Liu, P. et al. Isothermal crystallization of polypropylene/surface modified silica nanocomposites. Sci. China Chem. 59, 1283–1290 (2016). https://doi.org/10.1007/s11426-016-0146-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0146-0

Keywords

Navigation