Skip to main content
Log in

The effect of the addition of polypropylene grafted SiO2 nanoparticle on the crystallization behavior of isotactic polypropylene

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The crystallization behavior of isotactic polypropylene (iPP)/silica particle (SiO2, 26 nm) nanocomposite has been investigated. In addition to the non surface-modified SiO2, iPP grafted SiO2 was synthesized and adopted to this study with an aim to understand the role of grafted polymer chain on the crystallization process. The crystallization rate of non surface-modified iPP/SiO2 composite stays constant up to 1 vol%. It suggests the very weak nucleation ability of nano-sized silica particle. While large acceleration effect was observed for iPP-grafted SiO2/iPP composite. The spherulite density increased with increasing SiO2 contents, and more interestingly, the spherulite growth rate also increased. This finding leads to the conclusion that the grafted iPP chain has a plasticizing effect that reduces the chain entanglements at the interface. Further increase in SiO2 contents, the crystallization rate, the spherulite density, and the spherulite growth rate showed the steep decreases at higher SiO2 content range regardless of the surface modifications of SiO2. It was attributed to the confinement of matrix chain since the inter-particle distance of adjacent SiO2 approaches to the end-to-end distance of matrix chain, which a large molecular motion is restricted. Moreover, the average size of SiO2 aggregation in iPP matrix was successfully evaluated by analyzing the contents dependence of the growth rate, assuming that the inter-particle distance with zero growth rate coincided with end-to-end distance of matrix iPP chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liang JZ, Li RK. Mechanical properties and morphology of glass bead-filled polypropylene composites. Polym Compos. 1998;19:6.

    Article  Google Scholar 

  2. Premalal HG, Ismail H, Baharin A. Comparison of the mechanical properties of rice husk powder filled polypropylene composites with talc filled polypropylene composites. Polym Testing. 2002;21:833–9.

    Article  CAS  Google Scholar 

  3. Mucha M, Królikowski Z. Application of DSC to study crystallization kinetics of polypropylene containing fillers. J Therm Anal Calorim. 2003;74:549–57.

    Article  CAS  Google Scholar 

  4. Sumita M, Tsukihi H, Miyasaka K. Dynamic mechanical properties of polypropylene composites filled with ultrafine particles. J Appl Polym Sci. 1984;29:1523–30.

    Article  CAS  Google Scholar 

  5. Schadler LS, Brinson LC, Sawyer WG. Polymer nanocomposites: a small part of the story. J Miner Met Mater Soc. 2007;59:53–60.

    Article  CAS  Google Scholar 

  6. Nitta K, Asuka K, Liu B, Terano M. The effect of the addition of silica particles on linear spherulite growth rate of isotactic polypropylene and its explanation by lamellar cluster model. Polymer. 2006;47:6457–63.

    Article  CAS  Google Scholar 

  7. Asuka K, Liu B, Terano M, Nitta K. Homogeneously dispersed poly(propylene)/SiO2 nanocomposites with unprecedented transparency. Macromol Rapid Commun. 2006;27:910–3.

    Article  CAS  Google Scholar 

  8. Cheng HF, Sahoo NG, Lu X, Li L. Thermal kinetics of montmorillonite nanoclay/maleic anhydride-modified polypropylene nanocomposites. J Therm Anal Calorim. 2012;109:17–25.

    Article  CAS  Google Scholar 

  9. Wu CL, Zhang MQ, Rong MZ, Friedrich K. Silica nanoparticles filled polypropylene: effects of particle surface treatment, matrix ductility and particle species on mechanical performance of the composites. Compos Sci Tech. 2005;65:635–45.

    Article  CAS  Google Scholar 

  10. Lin OH, Akil HM, Ishak ZM. Characterization and properties of activated nanosilica/polypropylene composites with coupling agents. Polym Compos. 2009;30:1693–700.

    Article  CAS  Google Scholar 

  11. Demjén Z, Pukánszky B, Nagy J. Evaluation of interfacial interaction in polypropylene/surface treated CaCO3. Compos A. 1998;29A:323–9.

    Article  Google Scholar 

  12. Yan S, Yin J, Yang Y, Dai Z, Ma J, Chen X. Surface-grafted silica linked with l-lactic acid oligomer: a novel nanofiller to improve the performance of biodegradable poly(l-lactide). Polymer. 2007;48:1688–94.

    Article  CAS  Google Scholar 

  13. Zhou HJ, Rong MZ, Zhang MQ, Ruan WH, Friedrich K. Role of reactive compatibilization in preparation of nanosilica/polypropylene composites. Polym Eng Sci. 2007;47:499–509.

    Article  CAS  Google Scholar 

  14. Murthy R, Shell CE, Grunlan MA. The influence of poly(ethylene oxide) grafting via siloxane tethers on protein adsorption. Biomaterials. 2009;30:2433–9.

    Article  CAS  Google Scholar 

  15. Zdyrko B, Klep V, Luzinov I. Synthesis and surface morphology of high-density poly(ethylene glycol) grafted layers. Langmuir. 2003;19:10179–87.

    Article  CAS  Google Scholar 

  16. Kawaguchi M, Takahashi A. Polymer adsorption at solid-liquid interfaces. Adv Colloid Interface Sci. 1992;37:219–317.

    Article  CAS  Google Scholar 

  17. Kuo JC, Lin WF, Yu CH, Tsai JC, Wang TC, Chung TM, Ho RM. Isotactic polypropylene-based stereoregular diblock copolymers: syntheses and self-assembly. Macromolecules. 2008;41:7967–77.

    Article  CAS  Google Scholar 

  18. Umemori M, Taniike T, Terano M. Influences of polypropylene grafted to SiO2 nanoparticles on the crystallization behavior and mechanical properties of polypropylene/SiO2 nanocomposites. Polym Bull. 2012;68:1093–108.

    Article  CAS  Google Scholar 

  19. Yamamoto S, Ejaz M, Tsujii Y, Matsumoto M, Fukuda T. Surface interaction forces of well-defined, high-density polymer brushes studied by atomic force microscopy. 1. Effect of chain length. Macromolecules. 2000;33:5602–7.

    Article  CAS  Google Scholar 

  20. Israelachvili JN. Intermolecular and surface forces. 2nd ed. London: Academic; 1992.

    Google Scholar 

  21. Tsujii Y, Ohno K, Yamamoto S, Goto A. Structure and properties of high-density polymer brushes prepared by surface-initiated living radical polymerization. Adv Polym Sci. 2006;197:1–45.

    Article  CAS  Google Scholar 

  22. Yoshikawa C, Goto A, Ishizuka N, Nakanishi K, Kishida A, Tsujii Y, Fukuda T. Size-exclusion effect and protein repellency of concentrated polymer brushes prepared by surface-initiated living Radical polymerization. Macromol Symp. 2007;248:189–98.

    Article  CAS  Google Scholar 

  23. Ohno K, Morinaga T, Koh K, Tsujii Y, Fukuda T. Synthesis of monodisperse silica particles coated with well-defined, high-density polymer brushes by surface-initiated atom transfer radical polymerization. Macromolecules. 2005;38:2137–42.

    Article  CAS  Google Scholar 

  24. Yoshikawa C, Goto A, Tsujii Y, Fukuda T, Kimura T, Yamamoto K, Kishida A. Protein repellency of well-defined, concentrated poly(2-hydroxyethyl methacrylate) brushes by the size-exclusion effect. Macromolecules. 2006;39:2284–90.

    Article  CAS  Google Scholar 

  25. Liu Y, Bo S, Zhu Y, Zhang W. Determination of molecular weight and molecular sizes of polymers by high temperature gel permeation chromatography with a static and dynamic laser light scattering detector. Polymer. 2003;44:7209–20.

    Article  CAS  Google Scholar 

  26. Shang SW, Williams JW, Söderholm KM. How the work of adhesion affects the mechanical properties of silica-filled polymer composites. J Mater Sci. 1994;29:2406–16.

    Article  CAS  Google Scholar 

  27. Zhou RJ, Burkhart T. Polypropylene/SiO2 nanocomposites filled with different nanosilicas: thermal and mechanical properties, morphology and interphase characterization. J Mater Sci. 2011;46:1228–38.

    Article  CAS  Google Scholar 

  28. Chen L, Zheng K, Tian X, Hu K, Wang R, Liu C, Li Y, Cui P. Double glass transitions and interfacial immobilized layer in in-situ-synthesized poly(vinyl alcohol)/silica nanocomposites. Macromolecules. 2010;43:1076–82.

    Article  CAS  Google Scholar 

  29. Rong MZ, Zhang MQ, Pan SL, Lehmann B, Friedrich K. Analysis of the interfacial interactions in polypropylene/silica nanocomposites. Polym Int. 2004;53:176–83.

    Article  CAS  Google Scholar 

  30. Fragiadakis D, Pissis P, Bokobza L. Glass transition and molecular dynamics in poly(dimethylsiloxane)/silica nanocomposites. Polymer. 2005;46:6001–8.

    Article  CAS  Google Scholar 

  31. Avrami M. Kinetics of phase change. I. J Chem Phys. 1939;7:1103–13.

    Article  CAS  Google Scholar 

  32. Avrami M. Kinetics of phase change. II. J Chem Phys. 1940;8:212–25.

    Article  CAS  Google Scholar 

  33. Piorkowska E, Kulinski Z, Galeski A, Masirek R. Plasticization of semicrystalline poly(L-lactide) with poly(propylene glycol). Polymer. 2006;47:7178–88.

    Article  CAS  Google Scholar 

  34. Tyuzyo K, Harada Y. On the distance between particle in synthetic polymer emulsions. Kolloid Z. 1965;201:66–8.

    Article  CAS  Google Scholar 

  35. Zang Y, Carreau PJ. A correlation between critical end-to-end distance for entanglements and molecular chain diameter of polymers. J Appl Polym Sci. 1991;42:1965–8.

    Article  CAS  Google Scholar 

  36. Lauritzen JL, Hoffman JD. Theory of formation of polymer crystals with folded chains in dilute solution. J Res NBS. 1960;64:73.

    Article  Google Scholar 

  37. Umemoto S, Okui N. Power law and scaling for molecular weight dependence of crystal growth rate in polymeric materials. Polymer. 2005;46:8790–5.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiko Kawai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukuyama, Y., Kawai, T., Kuroda, Si. et al. The effect of the addition of polypropylene grafted SiO2 nanoparticle on the crystallization behavior of isotactic polypropylene. J Therm Anal Calorim 113, 1511–1519 (2013). https://doi.org/10.1007/s10973-012-2900-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2900-7

Keywords

Navigation