Skip to main content
Log in

Isobolographic analysis of the interaction between cadmium (II) and sodium sulphate: toxicological consequences

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Sulphate is an essential nutrient for autotrophic organisms and has been shown to have important implications in certain processes of tolerance to cadmium toxicity. Sodium sulphate is the main salt of sulphate in the natural environments. The concentration of this salt is increasing in the aquatic environments due to environmental pollution. The aim of this study was to investigate, using an analysis of isobolograms, the type and the degree of the interaction between Cd(II) and sodium sulphate in the freshwater microalga Chlamydomonas moewusii. Two blocks of experiments were performed, one at sub-optimal sodium sulphate concentrations (<14.2 mg/L) and the other at supra-optimal concentrations (>14.2 mg/L). Three fixed ratios (2:1, 1:1, and 1:2) of the individual EC50 for cadmium and sodium sulphate were used within each block. The isobolographic analysis of interaction at sub-optimal concentrations showed a stronger antagonistic effect with values of interaction index (γ) between 1.46 and 3.4. However, the isobologram with sodium sulphate at supra-optimal concentrations revealed a slight but significant synergistic effect between both chemicals with an interaction index between 0.54 and 0.64. This synergic effect resulted in the potentiation of the toxic effects of cadmium, synergy that was related to the increase of the ionic strength and of two species of cadmium, CdSO4 (aq), and Cd(SO4) 2 −2 , in the medium. Results of the current study suggest that sodium sulphate is able to perform a dual antagonist/synergist effect on cadmium toxicity. This role was concentration dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig 7
Fig. 8
Fig 9

Similar content being viewed by others

References

  • Ahmad A, Abdin MZ (2000) Photosynthesis and its related physiological variables in the leaves of Brassica genotypes as influenced by sulphur fertilization. Physiol Plantarum 110:144–149

    Article  CAS  Google Scholar 

  • Alves de Oliveira J, Cambraia J, Valle de Sousa M, Oliva MA (2009) Sulphate uptake and metabolism in water hyacinth and salvinia during cadmium stress. Aquat Bot 91:257–261

    Article  CAS  Google Scholar 

  • Anjum NA, Umar S, Ahmad A, Iqbal M, Khan NA (2008) Sulphur protects mustard (Brassica campestris L.) from cadmium toxicity by improving leaf ascorbate and glutathione. Plant Growth Regul 54:271–279

    Article  CAS  Google Scholar 

  • Baścik-Remisiewicz A, Aksmann A, Żak A, Kowalska M, Tukaj Z (2011) Toxicity of cadmium, anthracene, and their mixture to Desmodesmus subspicatus estimated by algal growth-inhibition ISO standard test. Arch Environ Contam Toxicol 60:610–617

    Article  CAS  Google Scholar 

  • Bochenek M, Etherington GJ, Koprivova A, Mugford ST, Bell TG, Malin G, Kopriva S (2013) Transcriptome analysis of the sulfate deficiency response in the marine microalga Emiliania huxleyi. New Phytol 199:650–662

    Article  CAS  Google Scholar 

  • Bowell RJ (2000) Sulphate and salt minerals: the problem of treating mine waste. Min Environ Manage 5:11–13

    Google Scholar 

  • Carfagna S, Salbitani G, Vona V, Esposito S (2011) Changes in cysteine and O-acetyl-l-serine levels in the microalga Chlorella sorokiniana in response to the S-nutritional status. J Plant Physiol 168:2188–2195

    Article  CAS  Google Scholar 

  • Cataldo DA, Garland TR, Wildung RE (1983) Cadmium uptake kinetics in intact soybean plants. Plant Physiol 73:844–848

    Article  CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  CAS  Google Scholar 

  • Davies TD (2007) Sulphate toxicity to the aquatic moss, Fontinalis antipyretica. Chemosphere 66:444–451

    Article  CAS  Google Scholar 

  • Ernst WHO, Krauss GJ, Verkleij JAC, Wesenberg D (2008) Interaction of heavy metals with the sulphur metabolism in angiosperms from an ecological point of view. Plant Cell Environ 31:123–143

    CAS  Google Scholar 

  • Filek M, Keskinen R, Hartikainen H, Szarejko I, Janiak A, Miszalski Z, Golda A (2008) The protective role of selenium in rape seedlings subjected to cadmium stress. J Plant Physiol 165:833–844

    Article  CAS  Google Scholar 

  • Folgar S, Torres E, Pérez-Rama M, Cid A, Herrero C, Abalde J (2009) Dunaliella salina as a marine microalga highly tolerant to but a poor remover of cadmium. J Hazard Mater 165:486–493

    Article  CAS  Google Scholar 

  • García-García JD, Olin-Sandoval V, Saavedra E, Girard L, Hernández G, Moreno-Sánchez R (2012) Sulfate uptake in photosynthetic Euglena gracilis. Mechanisms of regulation and contribution to cysteine homeostasis. BBA-Gen Subects 1820:1567–1575

    Article  CAS  Google Scholar 

  • Gessner PK (1995) Isobolographic analysis of interactions: an update on applications and utility. Toxicology 105:161–179

    Article  CAS  Google Scholar 

  • Gessner PK, Cabana BE (1970) A study of the interaction of the hypnotic effects and of the toxic effects of chloral hydrate and ethanol. J Pharmacol Exp Ther 174:247–259

    CAS  Google Scholar 

  • Gill SS, Tuteja N (2011) Cadmium stress tolerance in crop plants: probing the role of sulfur. Plant Signal Behav 6:215–222

    Article  CAS  Google Scholar 

  • Giordano M, Norici A, Hell R (2005) Sulfur and phytoplankton: acquisition, metabolism and impact on the environment. New Phytol 166:371–382

    Article  CAS  Google Scholar 

  • González-Ballester D, Casero D, Cokus S, Pellegrini M, Merchant SS, Grossman AR (2010) RNA-seq analysis of sulfur-deprived Chlamydomonas cells reveals aspects of acclimation critical for cell survival. Plant Cell 22:2058–2084

    Article  CAS  Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1987) Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc Natl Acad Sci U S A 84:439–443

    Article  CAS  Google Scholar 

  • Gustafsson JP (2013) Visual MINTEQ version 3.1 [online]. Department of Land and Water Resources Engineering. Royal Intitute of Technology, Stockholm

    Google Scholar 

  • Hamdy AA (2000) Biosorption of heavy metals by marine algae. Curr Microbiol 41:232–238

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Fujita M (2013) Cadmium: characteristics, sources of exposure, health and environmental effects. In: Hasanuzzaman M, Fujita M (eds) Chemistry Research and Applications. Nova Publishers, New York, p 369

    Google Scholar 

  • Holmer M, Storkholm P (2001) Sulphate reduction and sulphur cycling in lake sediments: a review. Freshwater Biol 46:431–451

    Article  CAS  Google Scholar 

  • Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Botany 2012:1–37

    Article  CAS  Google Scholar 

  • Järup L, Åkesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238:201–208

    Article  CAS  Google Scholar 

  • Källqvist T (2009) Effect of water hardness on the toxicity of cadmium to the green alga Pseudokirchneriella subcapitata in an artificial growth medium and nutrient-spiked natural lake waters. J Toxicol Environ Health A 72:277–283

    Article  CAS  Google Scholar 

  • Langston WJ (1990) Toxic effects of metals and the incidence of metal pollution in marine ecosystems. In: Furness RW, Rainbow PS (eds) Heavy Metals in the Marine Environment. CRC Press, Boca Raton, Florida, pp 101–122

    Google Scholar 

  • Lavoie M, Campbell PG, Fortin C (2012) Extending the biotic ligand model to account for positive and negative feedback interactions between cadmium and zinc in a freshwater alga. Environ Sci Technol 46:12129–12136

    Article  CAS  Google Scholar 

  • Loewe S (1927) Die mischiarnei. Klin Wochenschr 6:1077–1085

    Article  Google Scholar 

  • Lopez-Chuken UJ, Young SD (2010) Modelling sulphate-enhanced cadmium uptake by Zea mays from nutrient solution under conditions of constant free Cd2+ ion activity. J Environ Sci 22:1080–1085

    Article  CAS  Google Scholar 

  • Ma N, Li C, Dong X, Wang D, Xu Y (2015) Different effects of sodium chloride preincubation on cadmium tolerance of Pichia kudriavzevii and Saccharomyces cerevisiae. J Basic Microbiol 55:1002–12

    Article  CAS  Google Scholar 

  • Mariem W, Kilani BR, Benet G, Abdelbasset L, Stanley L, Charlotte P, Chedly A, Tahar G (2014) How does NaCl improve tolerance to cadmium in the halophyte Sesuvium portulacastrum? Chemosphere 117:243–50

    Article  CAS  Google Scholar 

  • Marino R, Howarth RW, Chan F, Cole JJ, Likens GE (2003) Sulfate inhibition of molybdenum-dependent nitrogen fixation by planktonic cyanobacteria under seawater conditions: a non-reversible effect. Hydrobiologia 500:277–293

    Article  CAS  Google Scholar 

  • Mason CF (2002) Biology of freshwater pollution. Pearson Education Limited, Harlow

    Google Scholar 

  • McLaughlin MJ, Andrew SJ, Smart MK, Smolders E (1998) Effects of sulfate on cadmium uptake by Swiss chard: I. Effects of complexation and calcium competition in nutrient solutions. Plant Soil 202:211–216

    Article  CAS  Google Scholar 

  • Mei X, Li S, Li Q, Yang Y, Luo X, He B, Li H, Xu Z (2014) Sodium chloride salinity reduces Cd uptake by edible amaranth (Amaranthus mangostanus L.) via competition for Ca channels. Ecotoxicol Environ Saf 105:59–64

    Article  CAS  Google Scholar 

  • Mendoza-Cózatl D, Loza-Tavera H, Hernández-Navarro A, Moreno-Sánchez R (2005) Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol Rev 29:653–671

    Article  CAS  Google Scholar 

  • Mera R, Torres E, Abalde J (2014) Sulphate, more than a nutrient, protects the microalga Chlamydomonas moewusii from cadmium toxicity. Aquat Toxicol 148C:92–103

    Article  CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Govindarajan R, Kuriakose SV, Prasad MNV (2006) Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol Biochem 44:25–37

    Article  CAS  Google Scholar 

  • Mislin H, Ravera O (1986) Cadmium in the environment. Experientia Supplementum, 50. Birkhäuser Verlag Basel, Basel

    Google Scholar 

  • Nazar R, Iqbal N, Masood A, Khan MIR, Syeed S, NA K (2012) Cadmium toxicity in plants and role of mineral nutrients in its alleviation. Am J Plant Sci 3:1476–1489

    Article  CAS  Google Scholar 

  • Niyogi S, Wood CM (2004) Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals. Environ Sci Technol 38:6177–6192

    Article  CAS  Google Scholar 

  • Nocito FF, Pirovano L, Cocucci M, Sacchi GA (2002) Cadmium-induced sulfate uptake in maize roots. Plant Physiol 129:1872–1879

    Article  CAS  Google Scholar 

  • Nocito FF, Lancilli C, Crema B, Fourcoy P, Davidian JC, Sacchi GA (2006) Heavy metal stress and sulfate uptake in maize roots. Plant Physiol 141:1138–1148

    Article  CAS  Google Scholar 

  • Pérez-Rama M, Torres E, Abalde J (2006) Composition and production of thiol constituents induced by cadmium in the marine microalga Tetraselmis suecica. Environ Toxicol Chem 25:128–136

    Article  Google Scholar 

  • Radway JC, Wilde EW, Whitaker MJ, Weissman JC (2001) Screening of algal strains for metal removal capabilities. J Appl Phycol 13:451–455

    Article  CAS  Google Scholar 

  • Rai LC, Gaur JP, Kumar HD (1981) Phycology and heavy-metal pollution. Biol Rev 56:99–151

    Article  CAS  Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotech 8:221–226

    Article  CAS  Google Scholar 

  • Rivetta A, Negrini N, Cocucci M (1997) Involvement of Ca2+-calmodulin in Cd2+ toxicity during the early phases of radish (Raphanus sativus L.) seed germination. Plant Cell Environ 20:600–608

    Article  CAS  Google Scholar 

  • Sanità di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Shafi M, Bakht J, Hassan MJ, Raziuddin M, Zhang G (2009) Effect of cadmium and salinity stresses on growth and antioxidant enzyme activities of wheat (Triticum aestivum L.). Bull Environ Contam Toxicol 82:772–776

    Article  CAS  Google Scholar 

  • Suárez C, Torres E, Pérez-Rama M, Herrero C, Abalde J (2010) Cadmium toxicity on the freshwater microalga Chlamydomonas moewusii Gerloff: biosythesis of thiol compounds. Environ Toxicol Chem 29:1–7

    Article  CAS  Google Scholar 

  • Suzuki N (2005) Alleviation by calcium of cadmium-induced root growth inhibition in Arabidopsis seedlings. Plant Biotechnol 22:19–25

    Article  CAS  Google Scholar 

  • Tallarida RJ (1992) Statistical analysis of drug combinations for synergism. Pain 49:93–97

    Article  CAS  Google Scholar 

  • Tallarida RJ, Porreca F, Cowan A (1989) Statistical analysis of drug-drug and site-site interactions with isobolograms. Life Sci 45:947–961

    Article  CAS  Google Scholar 

  • Torres E, Cid A, Herrero C, Abalde J (1998) Removal of cadmium ions by the marine diatom Phaeodactylum tricornutum Bohlin accumulation and long-term kinetics of uptake. Bioresour Technol 63:213–220

    Article  CAS  Google Scholar 

  • Torres E, Cid A, Herrero C, Abalde J (2000) Effect of cadmium on growth, ATP content, carbon fixation and ultrastructure in the marine diatom Phaeodactylum tricornutum Bohlin. Water Air Soil Pollut 117:1–14

    Article  CAS  Google Scholar 

  • Torres E, Mera R, Abalde J (2013) Toxicity and tolerance in microalgal cells exposed to cadmium: a current overview. In: Hasanuzzaman M, Fujita M (eds) Cadmium: characteristics, sources of exposure, health and environmental effects. Chemistry Research and Applications. Nova Publishers, New York, pp 171–196

    Google Scholar 

  • Travieso L, Cañizares RO, Borja R, Benitez F, Domínguez AR, Dupeyron R, Valiente V (1999) Heavy metal removal by microalgae. Bull Environ Contam Toxicol 62:144–151

    Article  CAS  Google Scholar 

  • Van Assche F (1998) The relative contributions of different environmental sources to human exposure and the EU cadmium risk assessment, 8th International Nickel Cadmium Conference, Prague

  • Vatamaniuk OK, Mari S, Lu Y, Rea PA (2000) Mechanism of heavy metal ion activation of phytochelatin (PC) synthase. J Biol Chem 275:31451–31459

    Article  CAS  Google Scholar 

  • Veltman K, Huijbregts MA, Hendriks AJ (2010) Integration of biotic ligand models (BLM) and bioaccumulation kinetics into a mechanistic framework for metal uptake in aquatic organisms. Environ Sci Technol 44:5022–5028

    Article  CAS  Google Scholar 

  • Wang QC, Song H (2009) Calcium protects Trifolium repens L. seedlings against cadmium stress. Plant Cell Rep 28:1341–1349

    Article  CAS  Google Scholar 

  • Zembala M, Filek M, Walas S, Mrowiec H, Kornaś A, Miszalski Z, Hartikainen H (2010) Effect of selenium on macro- and microelement distribution and physiological parameters of rape and wheat seedlings exposed to cadmium stress. Plant Soil 329:457–468

    Article  CAS  Google Scholar 

  • Zhang BL, Shang SH, Zhang HT, Jabeen Z, Zhang GP (2013) Sodium chloride enhances cadmium tolerance through reducing cadmium accumulation and increasing anti-oxidative enzyme activity in tobacco. Environ Toxicol Chem 32:1420–5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Torres.

Additional information

Responsible editor: Hailong Wang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mera, R., Torres, E. & Abalde, J. Isobolographic analysis of the interaction between cadmium (II) and sodium sulphate: toxicological consequences. Environ Sci Pollut Res 23, 2264–2278 (2016). https://doi.org/10.1007/s11356-015-5909-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5909-1

Keywords

Navigation