Skip to main content
Log in

Post-acquisition data processing for the screening of transformation products of different organic contaminants. Two-year monitoring of river water using LC-ESI-QTOF-MS and GCxGC-EI-TOF-MS

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study describes a comprehensive strategy for detecting and elucidating the chemical structures of expected and unexpected transformation products (TPs) from chemicals found in river water and effluent wastewater samples, using liquid chromatography coupled to electrospray ionization quadrupole-time-of-flight mass spectrometer (LC-ESI-QTOF-MS), with post-acquisition data processing and an automated search using an in-house database. The efficacy of the mass defect filtering (MDF) approach to screen metabolites from common biotransformation pathways was tested, and it was shown to be sufficiently sensitive and applicable for detecting metabolites in environmental samples. Four omeprazole metabolites and two venlafaxine metabolites were identified in river water samples. This paper reports the analytical results obtained during 2 years of monitoring, carried out at eight sampling points along the Henares River (Spain). Multiresidue monitoring, for targeted analysis, includes a group of 122 chemicals, amongst which are pharmaceuticals, personal care products, pesticides and PAHs. For this purpose, two analytical methods were used based on direct injection with a LC-ESI-QTOF-MS system and stir bar sorptive extraction (SBSE) with bi-dimensional gas chromatography coupled with a time-of-flight spectrometer (GCxGC-EI-TOF-MS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

4-AAA:

4-Acetylaminoantipyrine

4-FAA:

4-Formylaminoantipyrine

CBZ:

Carbamazepine

CE:

Collision energy

DP:

Declustering potential

GCxGC-EI-TOF-MS:

Bi-dimensional gas chromatography coupled to electron ionization time of flight spectrometer

GSH:

Glutathione conjugation

HPLC:

High-performance liquid chromatography

IDA:

Information-dependent acquisition

IPF:

Isotope pattern filtering

IS:

Internal standards

LC-ESI-QTOF-MS:

Liquid chromatography coupled to electrospray ionization-hybrid quadrupole time of flight mass spectrometry

LC-MS:

Liquid chromatography-mass spectrometry

LOD:

Detection limit

LOQ:

Quantitation limit

LRTD:

Loratadine

MDF:

Mass defect filter

NDV:

N-desmethylvenlafaxine

NL:

Neutral loss

ODV:

O-desmethylvenlafaxine

OM:

Omeprazole

PAHs:

Polycyclic aromatic hydrocarbons

PDMS:

Polydimethylsiloxane

PI:

Product ion

PPCPs:

Pharmaceuticals and personal care products

PRPL:

Propanolol

PTV:

Programmed temperature vaporisation

QTOF:

Quadrupole time of flight mass spectrometer

RDB:

Ring and double bond

SBSE:

Stir bar sorptive extraction

SQF:

Spectrum quality filter

TBL:

Terbutaline

TDU:

Thermal desorption unit

TIC:

Total ion chromatogram

TPs:

Transformation products

VLF:

Venlafaxine

WFD:

Water Framework Directive

WWTP:

Wastewater treatment plant

XIC:

Extracted ion chromatogram

References

  • Agüera A, Martínez Bueno MJ, Fernández-Alba AR (2013) New trends in the analytical determination of emerging contaminants and their transformation products in environmental waters. Environ Sci Pollut Res 20:3496–3515

    Article  Google Scholar 

  • Bateman KP, Castro-Perez J, Wrona M, Shockcor JP, Yu K, Oballa R, Nicoll-Griffith DA (2007) MSE with mass defect filtering for in vitro and in vivo metabolite identification. Rapid Commun Mass Spectrom 21:1485–1496

    Article  CAS  Google Scholar 

  • Boix C, Ibáñez M, Zamora T, Sancho JV, Niessen WMA, Hernández F (2014) Identification of new omeprazole metabolites in wastewaters and surface waters. Sci Total Environ 468–469:706–714

    Article  Google Scholar 

  • Clarke NJ, Rindgen D, Korfmacher WA, Cox KA (2001) Systematic LC/MS metabolite identification in drug discovery. A four-step strategy to characterize metabolites by LC/MS techniques early in the pharmaceutical discovery process. Anal Chem 73:431A

    Article  Google Scholar 

  • Constance MM, Fenselau C (1992) Fragmentation characteristic of glutathione conjugates activated by high-energy collisions. J Am See Mass Spectrom 3:815–822

    Article  Google Scholar 

  • Corcoran O, Nicholson JK, Lenz EM, Abou-Shakra F, Castro-Perez J, Sage AB, Wilson ID (2000) Directly coupled liquid chromatography with inductively coupled plasma mass spectrometry and orthogonal acceleration time-of-flight mass spectrometry for the identification of drug metabolites in urine: application to diclofenac using chlorine and sulfur detection. Rapid Commun Mass Spectrom 14:2377–2384

    Article  CAS  Google Scholar 

  • Cuyckens F, Hurkmans R, Castro-Perez JM, Leclercq L, Russell J, Mortishire-Smith RJ (2009) Extracting metabolite ions out of a matrix background by combined mass defect, neutral loss and isotope filtration. Rapid Commun Mass Spectrom 23:327–332

    Article  CAS  Google Scholar 

  • Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal L 327 , 22/12/2000 P. 0001 - 0073. http://eurlex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32000L0060

  • Gómez MJ, Sirtori C, Mezcua M, Fernández-Alba AR, Agüera A (2008) Photodegradation study of three dipyrone metabolites in various water systems: Identification and toxicity of their photodegradation products. Water Res 42:2698–2706

    Article  Google Scholar 

  • Gómez MJ, Gómez-Ramos MM, Malato O, Mezcua M, Férnandez-Alba AR (2010) Rapid automated screening, identification and quantification of organic micro-contaminants and their main transformation products in wastewater and river waters using liquid chromatography–quadrupole-time-of-flight mass spectrometry with an accurate-mass database. J Chromatogr A 1217:7038–7054

    Article  Google Scholar 

  • Gómez MJ, Herrera S, Sole D, García-Calvo E, Fernández-Alba AR (2011) Automatic searching and evaluation of priority and emerging contaminants in wastewater and river water by stir bar sorptive extraction followed by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Anal Chem 83:2638–2647

    Article  Google Scholar 

  • Gómez MJ, Herrera S, Solé D, García-Calvo E, Fernández-Alba AR (2012) Spatio-temporal evaluation of organic contaminants and their transformation products along a river basin affected by urban, agricultural and industrial pollution. Sci Total Environ 420:134–145

    Article  Google Scholar 

  • Gómez-Ramos MM, Pérez-Parada A, García-Reyes JF, Fernández-Alba AR, Agüera A (2011) Use of an accurate-mass database for the systematic identification of transformation products of organic contaminants in wastewater effluents. J Chromatogr A 1218:8002–8012

    Article  Google Scholar 

  • Gros M, Petrovic M, Barceló D (2008) Analysis of emerging contaminants of municipal and industrial origin. Hdb Env Chem 5:37–104

    Google Scholar 

  • Herrera López S, Hernando MD, Gómez MJ, Santiago-Morales J, Rosal R, Fernández-Alba AR (2013) Investigation of galaxolide degradation products generated under oxidative and irradiation processes by liquid chromatography/hybrid quadrupole time-of-flight mass spectrometry and comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 27:1237–1250

    Article  Google Scholar 

  • Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, Ojima Y, Tanaka K, Tanaka S, Aoshima K, Oda Y, Kakazu Y, Kusano M, Tohge T, Matsuda F, Sawada Y, Hirai MY, Nakanishi H, Ikeda K, Akimoto N, Maoka T, Takahashi H, Ara T, Sakurai N, Suzuki H, Shibata D, Neumann S, Iida T, Tanaka K, Funatsu K, Matsuura F, Soga T, Taguchi R, Saito K, Nishioka T (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J. Mass Spectrom 45:703–714

    Article  CAS  Google Scholar 

  • Jeon J, Kurth D, Ashauer R, Hollender J (2013) Comparative toxicokinetics of organic micropollutants in freshwater crustaceans. Environ Sci Technol 47:8809–8817

    CAS  Google Scholar 

  • Jurado A, Vàzquez-Suñé E, Carrera J, López de Alda M, Pujades E, Barceló D (2012) Emerging organic contaminants in groundwater in Spain: a review of sources, recent occurrence and fate in a European context. Sci Total Environ 440:82–94

    Article  CAS  Google Scholar 

  • Kingbäck M, Josefsson M, Karlsson L, Ahlnera J, Bengtsson F, Fredrik C, Kugelberga FC, Carlsson B (2010) Stereoselective determination of venlafaxine and its three demethylated metabolites in human plasma and whole blood by liquid chromatography with electrospray tandem mass spectrometric detection and solid phase extraction. J Pharmaceut Biomed 53:583–590

    Article  Google Scholar 

  • Kostiainen R, Kotiaho T, Kuuranne T, Auriola S (2003) Liquid chromatography/atmospheric pressure ionization–mass spectrometry in drug metabolism studies. J Mass Spectrom 38:357–372

    Article  CAS  Google Scholar 

  • Kumari Karra V, Rao Pilli N, Inamadugu JK, Seshagiri Rao JV (2012) Simultaneous determination of losartan, losartan acid and amlodipine in human plasma by LC-MS/MS and its application to a human pharmacokinetic study. Pharm Methods 3

  • Lafaye A, Junot C, Gall BR, Fritsch P, Ezan E, Tabet J-C (2004) Profiling of sulfoconjugates in urine using precursor ion and neutral loss scans in tandem mass spectrometry. Application to the investigation of heavy metal toxicity in rats. J Mass Spectrom 39:655–664

    Article  CAS  Google Scholar 

  • Liu DQ, Hop CE (2005) Strategies for characterization of drug metabolites using liquid chromatography-tandem mass spectrometry in conjunction with chemical derivatization and on-line H/D exchange approaches. J Pharm Biomed 37:1

    Article  Google Scholar 

  • Lopez-Doval JC, Ginebreda A, Caquet T, Dahm CN, Petrovic M, Barcelo D, Munoz I (2013) Pollution in Mediterranean-climate rivers. Hydrobiologia 719:427–450

    Article  Google Scholar 

  • Martínez Bueno MJ, Hernando MD, Herrera S, Gómez MJ, Fernández-Alba AR, Bustamante I, García-Calvo E (2010) Pilot survey of chemical contaminants from industrial and human activities in river waters of Spain. Intern J Environ Anal Chem 90:321–343

    Article  Google Scholar 

  • Martínez Bueno MJ, Uclés S, Hernando MD, Fernández-Alba AR (2011a) Development of a solvent-free method for the simultaneous identification/quantification of drugs of abuse and their metabolites in environmental water by LC–MS/MS. Talanta 85:157–166

    Article  Google Scholar 

  • Martínez Bueno MJ, Uclés S, Hernando MD, Dávoli E, Fernández-Alba AR (2011b) Evaluation of selected ubiquitous contaminants in the aquatic environment and their transformation products. A pilot study of their removal from a sewage treatment plant. Water Res 45:2331–2341

    Article  Google Scholar 

  • Martínez Bueno MJ, Gómez MJ, Herrera S, Hernando MD, Agüera A, Fernández-Alba AR (2012) Occurrence and persistence of organic emerging contaminants and priority pollutants in five sewage treatment plants of Spain: two-year pilot monitoring survey. Environ Pollut 164:267–273

    Article  Google Scholar 

  • Mortishire-Smith RJ, O’Connor D, Castro-Perez JM, Kirby J (2005) Accelerated throughput metabolic route screening in early drug discovery using high-resolution liquid chromatography/quadrupole time-of-flight mass spectrometry and automated data analysis. Rapid Commun Mass Spectrom 19:2659–2670

    Article  CAS  Google Scholar 

  • Regulation (EC) No 1907/2006 2004 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency. http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:396:0001:0001:EN:PDF

  • Oberacher H, Pavlic M, Libiseller K, Schubert B, Sulyok M, Schuhmacher R, Csaszar E, Köfeler HC (2009) On the inter-instrument and inter-laboratory transferability of a tandem mass spectral reference library: 1. Results of an Austrian multicenter study. J Mass Spectrom 44:485–493

    Article  CAS  Google Scholar 

  • Oberacher H, Pitterl F, Siapi E, Steele BR, Letzel T, Grosse S, Poschner B, Tagliaro F, Gottardo R, Chacko SA, Josephs JL (2012) On the inter-instrument and the inter-laboratory transferability of a tandem mass spectral reference library. 3. Focus on ion trap and upfront CID. J. Mass Spectrom 47:263–270

    Article  CAS  Google Scholar 

  • Polinko M, Riffel K, Song H, Lo MW (2003) Simultaneous determination of losartan and EXP3174 in human plasma and urine utilizing liquid chromatography/ tandem mass spectrometry. J Pharmaceut Biomed 33:73–84

    Article  CAS  Google Scholar 

  • Qiao S, Shi X, Shi R, Liu M, Liu T, Zhang K, Wang Q, Yao M, Zhang L (2013) Identification of urinary metabolites of imperatorin with a single run on an LC/Triple TOF system based on multiple mass defect filter data acquisition and multiple data mining techniques. Anal Bioanal Chem 405:6721–6738

    Article  CAS  Google Scholar 

  • Regulation (EC) No 726/2004 of the European Parliament and of the Council of 31 March 2004 laying down Community procedures for the authorisation and supervision of medicinal products for human and veterinary use and establishing a European Medicines Agency. http://www.biosafety.be/EMEA/726_2004_EN.pdf

  • Ruan Q, Peterman S, Szewc MA, Ma L, Cui D, Griffith Humphreys W, Zhu M (2008) An integrated method for metabolite detection and identification using a linear ion trap/Orbitrap mass spectrometer and multiple data processing techniques: application to indinavir metabolite detection. J Mass Spectrom 43:251–261

    Article  CAS  Google Scholar 

  • Sleno L, Volmer DA, Marshall AG (2005) Assigning product ions from complex MS/MS spectra: the importance of mass uncertainty and resolving power. J Am Soc Mass Spectrom 16:183–198

    Article  CAS  Google Scholar 

  • Sundstrom I, Hedeland M, Bondesson U, Andren PE (2002) Identification of glucuronide conjugates of ketobemidone and its phase I metabolites in human urine utilizing accurate mass and tandem time-of-flight mass spectrometry. J Mass Spectrom 37:414–420

    Article  CAS  Google Scholar 

  • Tautenhahn R, Cho K, Uritboonthai W, Zhu Z, Patti GJ, Siuzdak G (2012) An accelerated workflow for untargeted metabolomics using the METLIN database, Nat. Biotechnol 30:826–828

    CAS  Google Scholar 

  • Viette V, Guillarme D, Mylonas R, Mauron Y, Fathi M, Rudaz S, Hochstrasser D, Veuthey JL (2011) A multi-target screening analysis in human plasma using fast liquid chromatography–hybrid tandem mass spectrometry (Part I). Clin Biochem 44:32–44

    Article  CAS  Google Scholar 

  • Wegst-Uhrich SR, Navarro DAG, Zimmerman L, Aga DS (2014) Assessing antibiotic sorption in soil: a literature review and new case studies on sulfonamides and macrolides. Chem Cent J 8:5. doi:10.1186/1752-153X-8-5

    Article  Google Scholar 

  • Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, Hau DD, Psychogios N, Dong E, Bouatra S, Mandal R, Sinelnikov I, Xia J, Jia L, Cruz JA, Lim E, Sobsey CA, Shrivastava S, Huang P, Liu P, Fang L, Peng J, Fradette R, Cheng D, Tzur D, Clements M, Lewis A, De Souza A, Zuniga A, Dawe M, Xiong Y, Clive D, Greiner R, Nazyrova A, Shaykhutdinov R, Li L, Vogel HJ, Forsythe I (2009) HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 37:603–610

    Article  Google Scholar 

  • Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, Djoumbou Y, Mandal R, Aziat F, Dong E, Bouatra S, Sinelnikov I, Arndt D, Xia J, Liu P, Yallou F, Bjorndahl T, Perez-Pineiro R, Eisner R, Allen F, Neveu V, Greiner R, Scalbert A (2013) HMDB 3.0—the human metabolome database in 2013. Nucleic Acids Res 41:801–807

    Article  Google Scholar 

  • Wrona M, Mauriala T, Bateman KP, Mortishire-Smith RJ, O’Connor D (2005) ‘All-in-One’ analysis for metabolite identification using liquid chromatography/hybrid quadrupole time-of-flight mass spectrometry with collision energy switching. Rapid Commun Mass Spectrom 19:2597–2602

    Article  CAS  Google Scholar 

  • Zhang HW, Heinig K, Henion J (2000) Atmospheric pressure ionization time-of-flight mass spectrometry coupled with fast liquid chromatography for quantitation and accurate mass measurement of five pharmaceutical drugs in human plasma. J Mass Spectrom 35:423–431

    Article  CAS  Google Scholar 

  • Zhang H, Zhang D, Ray K (2003) A software filter to remove interference ions from drug metabolites in accurate mass liquid chromatography/mass spectrometric analyses. J Mass Spectrom 38:1110–1112

    Article  CAS  Google Scholar 

  • Zhang H, Zhang D, Ray K, Zhu M (2009) Mass defect filter technique and its applications to drug metabolite identification by high-resolution mass spectrometry. J Mass Spectrom 44:999–1016

    Article  CAS  Google Scholar 

  • Zhao ZZ, Wang Q, Tsai EW, Qin X, Ip D (1999) Identification of losartan degradates in stressed tablets by LC-MS and LC-MS/MS. J Pharm Biomed Anal 20:129–136

    Article  CAS  Google Scholar 

  • Zhu M, Ma L, Zhang D, Ray K, Zhao W, Humphreys WG, Skiles G, Sanders M, Zhang H (2006) Detection and characterization of metabolites in biological matrices using mass defect filtering of liquid chromatography/high resolution mass spectrometry data. DMD 34:1722–1733

    Article  CAS  Google Scholar 

  • Zhu M, Ma L, Zhang H, Humphreys WG (2007) Detection and structural characterization of glutathione-trapped reactive metabolites using liquid chromatography-high-resolution mass spectrometry and mass defect filtering. Anal Chem 79:8333

    Article  CAS  Google Scholar 

  • Zhu P, Tong W, Alton K, Chowdhury S (2009) An accurate-mass-based spectral-averaging isotope-pattern-filtering algorithm for extraction of drug metabolites possessing a distinct isotope pattern from LC-MS Data. Anal Chem 81:5910–5917

    Article  CAS  Google Scholar 

  • Zhu M, Zhang H, Griffith Humphreys W (2011) Drugs metabolite profiling and identification by high-resolution mass spectrometry. J Biol Chem 286:25419–25425

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Spanish Ministry of Science and Innovation (Project CTM2011-27657).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Fernández-Alba.

Additional information

Responsible editor: Ester Heath

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López, S.H., Ulaszewska, M.M., Hernando, M.D. et al. Post-acquisition data processing for the screening of transformation products of different organic contaminants. Two-year monitoring of river water using LC-ESI-QTOF-MS and GCxGC-EI-TOF-MS. Environ Sci Pollut Res 21, 12583–12604 (2014). https://doi.org/10.1007/s11356-014-3187-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3187-y

Keywords

Navigation