Skip to main content
Log in

Large-scale non-targeted metabolomic profiling in three human population-based studies

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Non-targeted metabolomic profiling is used to simultaneously assess a large part of the metabolome in a biological sample. Here, we describe both the analytical and computational methods used to analyze a large UPLC–Q-TOF MS-based metabolomic profiling effort using plasma and serum samples from participants in three Swedish population-based studies of middle-aged and older human subjects: TwinGene, ULSAM and PIVUS. At present, more than 200 metabolites have been manually annotated in more than 3600 participants using an in-house library of standards and publically available spectral databases. Data available at the metabolights repository include individual raw unprocessed data, processed data, basic demographic variables and spectra of annotated metabolites. Additional phenotypical and genetic data is available upon request to cohort steering committees. These studies represent a unique resource to explore and evaluate how metabolic variability across individuals affects human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Brodsky, L., Moussaieff, A., Shahaf, N., Aharoni, A., & Rogachev, I. (2010). Evaluation of peak picking quality in LC-MS metabolomics data. Analytical Chemistry, 82(22), 9177–9187. doi:10.1021/ac101216e.

    Article  PubMed  CAS  Google Scholar 

  • Broeckling, C. D., Heuberger, A. L., Prince, J. A., Ingelsson, E., & Prenni, J. E. (2013). Assigning precursor–product ion relationships in indiscriminant MS/MS data from non-targeted metabolite profiling studies. Metabolomics, 9(1), 33–43. doi:10.1007/s11306-012-0426-4.

    Article  CAS  Google Scholar 

  • Buscher, J. M., Czernik, D., Ewald, J. C., Sauer, U., & Zamboni, N. (2009). Cross-platform comparison of methods for quantitative metabolomics of primary metabolism. Analytical Chemistry, 81(6), 2135–2143. doi:10.1021/ac8022857.

    Article  PubMed  CAS  Google Scholar 

  • Dudley, E., Yousef, M., Wang, Y., & Griffiths, W. J. (2010). Targeted metabolomics and mass spectrometry. Advances in Protein Chemistry and Structural Biology, 80, 45–83. doi:10.1016/B978-0-12-381264-3.00002-3.

    Article  PubMed  CAS  Google Scholar 

  • Floegel, A., Stefan, N., Yu, Z., Muhlenbruch, K., Drogan, D., Joost, H. G., et al. (2013). Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes, 62(2), 639–648. doi:10.2337/db12-0495.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ganna, A., Lee, D., Ingelsson, E., & Pawitan, Y. (2014a). Rediscovery rate estimation for assessing the validation of significant findings in high-throughput studies. Briefings in Bioinformatics,. doi:10.1093/bib/bbu033.

    PubMed  Google Scholar 

  • Ganna, A., Salihovic, S., Sundstrom, J., Broeckling, C. D., Hedman, A. K., Magnusson, P. K., et al. (2014b). Large-scale metabolomic profiling identifies novel biomarkers for incident coronary heart disease. PLoS Genetics, 10(12), e1004801. doi:10.1371/journal.pgen.1004801.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ingelsson, E., Sundstrom, J., Arnlov, J., Zethelius, B., & Lind, L. (2005). Insulin resistance and risk of congestive heart failure. JAMA, 294(3), 334–341. doi:10.1001/jama.294.3.334.

    Article  PubMed  CAS  Google Scholar 

  • Kerr, M. K., & Churchill, G. A. (2001). Statistical design and the analysis of gene expression microarray data. Genetical Research, 77(2), 123–128.

    PubMed  CAS  Google Scholar 

  • Leek, J. T., Scharpf, R. B., Bravo, H. C., Simcha, D., Langmead, B., Johnson, W. E., et al. (2010). Tackling the widespread and critical impact of batch effects in high-throughput data. Nature Reviews Genetics, 11(10), 733–739. doi:10.1038/nrg2825.

    Article  PubMed  CAS  Google Scholar 

  • Lind, L., Fors, N., Hall, J., Marttala, K., & Stenborg, A. (2005). A comparison of three different methods to evaluate endothelium-dependent vasodilation in the elderly: the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study. Arteriosclerosis, Thrombosis, and Vascular Biology, 25(11), 2368–2375. doi:10.1161/01.ATV.0000184769.22061.da.

    Article  PubMed  CAS  Google Scholar 

  • Magnusson, P. K., Almqvist, C., Rahman, I., Ganna, A., Viktorin, A., Walum, H., et al. (2013). The Swedish twin registry: establishment of a biobank and other recent developments. Twin Reserch and Human Genetics, 16(1), 317–329. doi:10.1017/thg.2012.104.

    Article  Google Scholar 

  • Menni, C., Fauman, E., Erte, I., Perry, J. R., Kastenmuller, G., Shin, S. Y., et al. (2013a). Biomarkers for type 2 diabetes and impaired fasting glucose using a non-targeted metabolomics approach. Diabetes,. doi:10.2337/db13-0570.

    PubMed  PubMed Central  Google Scholar 

  • Menni, C., Kastenmuller, G., Petersen, A. K., Bell, J. T., Psatha, M., Tsai, P. C., et al. (2013b). Metabolomic markers reveal novel pathways of ageing and early development in human populations. International Journal of Epidemiology, 42(4), 1111–1119. doi:10.1093/ije/dyt094.

    Article  PubMed  PubMed Central  Google Scholar 

  • Patti, G. J., Tautenhahn, R., & Siuzdak, G. (2012). Meta-analysis of untargeted metabolomic data from multiple profiling experiments. Nature Protocols, 7(3), 508–516. doi:10.1038/nprot.2011.454.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Plumb, R. S., Johnson, K. A., Rainville, P., Smith, B. W., Wilson, I. D., Castro-Perez, J. M., et al. (2006). UPLC/MS(E); a new approach for generating molecular fragment information for biomarker structure elucidation. Rapid Communications in Mass Spectrometry, 20(13), 1989–1994. doi:10.1002/rcm.2550.

    Article  PubMed  CAS  Google Scholar 

  • Prince, J. T., & Marcotte, E. M. (2006). Chromatographic alignment of ESI-LC-MS proteomics data sets by ordered bijective interpolated warping. Analytical Chemistry, 78(17), 6140–6152. doi:10.1021/ac0605344.

    Article  PubMed  CAS  Google Scholar 

  • Sheehan, N. A., Didelez, V., Burton, P. R., & Tobin, M. D. (2008). Mendelian randomisation and causal inference in observational epidemiology. PLoS Medicine, 5(8), e177. doi:10.1371/journal.pmed.0050177.

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78(3), 779–787. doi:10.1021/ac051437y.

    Article  PubMed  CAS  Google Scholar 

  • Stegemann, C., Pechlaner, R., Willeit, P., Langley, S. R., Mangino, M., Mayr, U., et al. (2014). Lipidomics profiling and risk of cardiovascular disease in the prospective population-based Bruneck study. Circulation, 129(18), 1821–1831. doi:10.1161/circulationaha.113.002500.

    Article  PubMed  CAS  Google Scholar 

  • Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis. chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics, 3(3), 211–221. doi:10.1007/s11306-007-0082-2.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tautenhahn, R., Bottcher, C., & Neumann, S. (2008). Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics, 9, 504. doi:10.1186/1471-2105-9-504.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tautenhahn, R., Patti, G. J., Rinehart, D., & Siuzdak, G. (2012). XCMS online: a web-based platform to process untargeted metabolomic data. Analytical Chemistry, 84(11), 5035–5039. doi:10.1021/ac300698c.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Thiele, I., Swainston, N., Fleming, R. M., Hoppe, A., Sahoo, S., Aurich, M. K., et al. (2013). A community-driven global reconstruction of human metabolism. Nature Biotechnology, 31(5), 419–425. doi:10.1038/nbt.2488.

    Article  PubMed  CAS  Google Scholar 

  • Tzoulaki, I., Ebbels, T. M., Valdes, A., Elliott, P., & Ioannidis, J. P. (2014). Design and analysis of metabolomics studies in epidemiologic research: a primer on -omic technologies. American Journal of Epidemiology, 180(2), 129–139. doi:10.1093/aje/kwu143.

    Article  PubMed  Google Scholar 

  • Wang, T. J., Larson, M. G., Vasan, R. S., Cheng, S., Rhee, E. P., McCabe, E., et al. (2011). Metabolite profiles and the risk of developing diabetes. Nature Medicine, 17(4), 448–453. doi:10.1038/nm.2307.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang-Sattler, R., Yu, Z., Herder, C., Messias, A. C., Floegel, A., He, Y., et al. (2012). Novel biomarkers for pre-diabetes identified by metabolomics. Molecular Systems of Biology, 8, 615. doi:10.1038/msb.2012.43.

    Article  Google Scholar 

  • Wurtz, P., Havulinna, A. S., Soininen, P., Tynkkynen, T., Prieto-Merino, D., Tillin, T., et al. (2015). Metabolite profiling and cardiovascular event risk: a prospective study of 3 population-based cohorts. Circulation, 131(9), 774–785. doi:10.1161/CIRCULATIONAHA.114.013116.

    Article  PubMed  Google Scholar 

  • Zhu, Z. J., Schultz, A. W., Wang, J., Johnson, C. H., Yannone, S. M., Patti, G. J., et al. (2013). Liquid chromatography quadrupole time-of-flight mass spectrometry characterization of metabolites guided by the METLIN database. Nature Protocols, 8(3), 451–460. doi:10.1038/nprot.2013.004.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Alexandra Jauhiainen for helpful insights and comments. Further, we want to extend our thanks to all participants of the TwinGene, ULSAM and PIVUS studies for the kind contribution to science. The computations were performed on resources provided by SNIC through Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX) under project b2011036.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tove Fall.

Ethics declarations

Conflict of interest

All authors declared no conflict of interest.

Ethical statement

All participants gave informed written consent and the Ethics Committees of Karolinska Institutet or Uppsala University approved the respective study protocol.

Funding

This study was supported by grants from Knut och Alice Wallenberg Foundation (Wallenberg Academy Fellow), European Research Council (ERC-2013-StG; Grant No. 335395), Swedish Diabetes Foundation (Grant No. 2013-024), Swedish Heart–Lung Foundation (Grant No. 20120197), the Family Ernfors Fund, the Swedish Government’s strategic research area EXODIAB (Excellence of Diabetes Research in Sweden), and Swedish Research Council (Grant No. 2012-1397). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Samples, subjects, and data outputs

We uploaded this information as ISA-Tab metadata format to the Metabolights repository.

Additional information

Andrea Ganna and Tove Fall have equal contribution to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganna, A., Fall, T., Salihovic, S. et al. Large-scale non-targeted metabolomic profiling in three human population-based studies. Metabolomics 12, 4 (2016). https://doi.org/10.1007/s11306-015-0893-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-015-0893-5

Keywords

Navigation