Skip to main content
Log in

Rapid analysis of pharmaceuticals and excreted xenobiotic and endogenous metabolites with atmospheric pressure infrared MALDI mass spectrometry

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Atmospheric pressure (AP) infrared (IR) matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) was demonstrated for the rapid direct analysis of pharmaceuticals, and excreted human metabolites. More than 50 metabolites and excreted xenobiotics were directly identified in urine samples with high throughput. As the water content of the sample was serving as the matrix, AP IR-MALDI showed no background interference in the low mass range. The structure of targeted ions was elucidated from their fragmentation pattern using collision activated dissociation. The detection limit for pseudoephedrine was found to be in the sub-femtomole range and the semi-quantitative nature of the technique was tentatively demonstrated for a metabolite, fructose, by using a homologous internal standard, sucrose. A potential application of AP IR-MALDI for intestinal permeability studies was also explored using polyethylene glycol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AP:

Atmospheric pressure

IR:

Infrared

MALDI:

Matrix-assisted laser desorption/ionization (MALDI)

MS:

Mass spectrometry

DESI:

Desorption electrospray ionization

DART:

Direct analysis in real time

DAPCI:

Desorption atmospheric pressure chemical ionization

LAESI:

Laser ablation electrospray ionization

DIOS:

Desorption ionization on silicon

LISMA:

Laser-induced silicon microcolumn arrays

CAD:

Collision activated dissociation

LOD:

Limit of detection

m/z :

Mass-to-charge ratio

References

  • Balchin, E., Malcolme-Lawes, D. J., Poplett, I. J., et al. (2005). Potential of nuclear quadrupole resonance in pharmaceutical analysis. Analytical Chemistry, 77, 3925–3930. doi:10.1021/ac0503658.

    Article  PubMed  CAS  Google Scholar 

  • Berkenkamp, S., Karas, M., & Hillenkamp, F. (1996). Ice as a matrix for IR-matrix-assisted laser desorption/ionization: Mass spectra from a protein single crystal. Proceedings of the National Academy of Sciences of the United States of America, 93, 7003–7007. doi:10.1073/pnas.93.14.7003.

    Article  PubMed  CAS  Google Scholar 

  • Bingham, S. A., Williams, R., Cole, T. J., Price, C. P., & Cummings, J. H. (1988). Reference values for analytes of 24-h urine collections known to be complete. Annals of Clinical Biochemistry, 25, 610–619.

    PubMed  CAS  Google Scholar 

  • Bjarnason, I., Macpherson, A., & Hollander, D. (1995). Intestinal permeability: An overview. Gastroenterology, 108, 1566–1581. doi:10.1016/0016-5085(95)90708-4.

    Article  PubMed  CAS  Google Scholar 

  • Blanco, M., Coello, J., Iturriaga, H., Maspoch, S., & de la Pezuela, C. (1998). Near-infrared spectroscopy in the pharmaceutical industry. Analyst (London), 123, 135R–150R. doi:10.1039/a802531b.

    Article  CAS  Google Scholar 

  • Bowers, L. D. (1997). Analytical advances in detection of performance-enhancing compounds. Clinical Chemistry, 43, 1299–1304.

    PubMed  CAS  Google Scholar 

  • Brand, H. S., Jorning, G. G. A., Chamuleau, R. A. F. M., & Abraham-Inpijn, L. (1997). Effect of a protein-rich meal on urinary and salivary free amino acid concentrations in human subjects. Clinica Chimica Acta, 264, 37–47. doi:10.1016/S0009-8981(97)00070-3.

    Article  CAS  Google Scholar 

  • Bunch, J., Clench, M. R., & Richards, D. S. (2004). Determination of pharmaceutical compounds in skin by imaging matrix-assisted laser desorption/ionisation mass spectrometry. Rapid Communications in Mass Spectrometry, 18, 3051–3060. doi:10.1002/rcm.1725.

    Article  PubMed  CAS  Google Scholar 

  • Caldwell, J., Gardner, I., & Swales, N. (1995). An introduction to drug disposition: The basic principles of absorption, distribution, metabolism, and excretion. Toxicologic Pathology, 23, 102–114.

    Article  PubMed  CAS  Google Scholar 

  • Camilleri, M., & Gorman, H. (2007). Intestinal permeability and irritable bowel syndrome. Neurogastroenterology & Motility, 19, 545–552. doi:10.1111/j.1365-2982.2007.00925.x.

    Article  CAS  Google Scholar 

  • Chen, Z., Bogaerts, A., & Vertes, A. (2006a). Phase explosion in atmospheric pressure infrared laser ablation from water-rich targets. Applied Physics Letters, 89, 041503. doi:10.1063/1.2243961.

    Article  CAS  Google Scholar 

  • Chen, H., Talaty, N. N., Takáts, Z., & Cooks, R. G. (2005). Desorption electrospray ionization mass spectrometry for high-throughput analysis of pharmaceutical samples in the ambient environment. Analytical Chemistry, 77, 6915–6927. doi:10.1021/ac050989d.

    Article  PubMed  CAS  Google Scholar 

  • Chen, H., Venter, A., & Cooks, R. G. (2006b). Extractive electrospray ionization for direct analysis of undiluted urine, milk and other complex mixtures without sample preparation. Chemical Communications (Cambridge), 2042–2044. doi:10.1039/b602614a.

  • Chen, Y., & Vertes, A. (2006). Adjustable fragmentation in laser desorption/ionization from laser-induced silicon microcolumn arrays. Analytical Chemistry, 78, 5835–5844. doi:10.1021/ac060405n.

    Article  PubMed  CAS  Google Scholar 

  • Chen, H. W., Wortmann, A., & Zenobi, R. (2007). Neutral desorption sampling coupled to extractive electrospray ionization mass spectrometry for rapid differentiation of biosamples by metabolomic fingerprinting. Journal of Mass Spectrometry, 42, 1123–1135. doi:10.1002/jms.1282.

    Article  PubMed  CAS  Google Scholar 

  • Chester, N., Mottram, D. R., Reilly, T., & Powell, M. (2004). Elimination of ephedrines in urine following multiple dosing: The consequences for athletes, in relation to doping control. British Journal of Clinical Pharmacology, 57, 62–67. doi:10.1046/j.1365-2125.2003.01948.x.

    Article  PubMed  CAS  Google Scholar 

  • Cody, R. B., Laramee, J. A., & Durst, H. D. (2005). Versatile new ion source for the analysis of materials in open air under ambient conditions. Analytical Chemistry, 77, 2297–2302. doi:10.1021/ac050162j.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, L. H., & Gusev, A. I. (2002). Small molecule analysis by MALDI mass spectrometry. Analytical and Bioanalytical Chemistry, 373, 571–586. doi:10.1007/s00216-002-1321-z.

    Article  PubMed  CAS  Google Scholar 

  • Dettmer, K., Aronov, P. A., & Hammock, B. D. (2007). Mass spectrometry-based metabolomics. Mass Spectrometry Reviews, 26, 51–78. doi:10.1002/mas.20108.

    Article  PubMed  CAS  Google Scholar 

  • Duncan, M. W., Matanovic, G., & Cerpa-Poljak, A. (1993). Quantitative analysis of low molecular weight compounds of biological interest by matrix-assisted laser desorption ionization. Rapid Communications in Mass Spectrometry, 7, 1090–1094. doi:10.1002/rcm.1290071207.

    Article  PubMed  CAS  Google Scholar 

  • Ens, W., Mao, Y., Mayer, F., & Standing, K. G. (1991). Properties of matrix-assisted laser desorption Measurements with a time-to-digital converter. Rapid Communications in Mass Spectrometry, 5, 117–123. doi:10.1002/rcm.1290050306.

    Article  PubMed  CAS  Google Scholar 

  • Glassbrook, N., Beecher, C., & Ryals, J. (2000). Metabolic profiling on the right path. Nature Biotechnology, 18, 1157–1161. doi:10.1038/81116.

    Article  Google Scholar 

  • Go, E. P., Prenni, J. E., Wei, J., et al. (2003). Desorption/ionization on silicon time-of-flight/time-of-flight mass spectrometry. Analytical Chemistry, 75, 2504–2506. doi:10.1021/ac026253n.

    Article  PubMed  CAS  Google Scholar 

  • Guimarães, A. E., Pacheco, M. T. T., Silveira, L., Jr, et al. (2006). Near infrared raman spectroscopy (NIRS): A technique for doping control. Spectroscopy: An International Journal, 20, 185–194.

    Google Scholar 

  • Hanton, S. D. (2001). Mass spectrometry of polymers and polymer surfaces. Chemical Reviews, 101, 527–569. doi:10.1021/cr9901081.

    Article  PubMed  CAS  Google Scholar 

  • Hsieh, Y., Casale, R., Fukuda, E., et al. (2006). Matrix-assisted laser desorption/ionization imaging mass spectrometry for direct measurement of clozapine in rat brain tissue. Rapid Communications in Mass Spectrometry, 20, 965–972. doi:10.1002/rcm.2397.

    Article  PubMed  CAS  Google Scholar 

  • Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28, 27–30. doi:10.1093/nar/28.1.27.

    Article  PubMed  CAS  Google Scholar 

  • Karas, M., & Hillenkamp, F. (1988). Laser desorption ionization of proteins with molecular masses exceeding 10, 000 Daltons. Analytical Chemistry, 60, 2299–2301. doi:10.1021/ac00171a028.

    Article  PubMed  CAS  Google Scholar 

  • Kauppila, T. J., Wiseman, J. M., Ketola, R. A., et al. (2006). Desorption electrospray ionization mass spectrometry for the analysis of pharmaceuticals and metabolites. Rapid Communications in Mass Spectrometry, 20, 387–392. doi:10.1002/rcm.2304.

    Article  PubMed  CAS  Google Scholar 

  • Kawase, K., Ogawa, Y., Watanabe, Y., & Inoue, H. (2003). Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Optics Express, 11, 2549–2554.

    Article  CAS  PubMed  Google Scholar 

  • Kostiainen, R., Kotiaho, T., Kuuranne, T., & Auriola, S. (2003). Liquid chromatography/atmospheric pressure ionization-mass spectrometry in drug metabolism studies. Journal of Mass Spectrometry, 38, 357–372. doi:10.1002/jms.481.

    Article  PubMed  CAS  Google Scholar 

  • Kuhara, T. (2007). Noninvasive human metabolome analysis for differential diagnosis of inborn errors of metabolism. Journal of Chromatography B Analytical Technologies in the Biomedical and Life Sciences, 855, 42–50. doi:10.1016/j.jchromb.2007.03.031.

    Article  CAS  Google Scholar 

  • Lahesmaarantala, R., Magnusson, K. E., Granfors, K., et al. (1991). Intestinal permeability in patients with Yersinia triggered reactive arthritis. Annals of the Rheumatic Diseases, 50, 91–94.

    Article  CAS  Google Scholar 

  • Laiko, V. V., Baldwin, M. A., & Burlingame, A. L. (2000). Atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry. Analytical Chemistry, 72, 652–657. doi:10.1021/ac990998k.

    Article  PubMed  CAS  Google Scholar 

  • Laiko, V. V., Taranenko, N. I., Berkout, V. D., et al. (2002). Desorption/ionization of biomolecules from aqueous solutions at atmospheric pressure using an infrared laser at 3 [mu]m. Journal of the American Society for Mass Spectrometry, 13, 354–361. doi:10.1016/S1044-0305(02)00341-0.

    Article  PubMed  CAS  Google Scholar 

  • Leuthold, L. A., Mandscheff, J. F., Fathi, M., et al. (2006). Desorption electrospray ionization mass spectrometry: Direct toxicological screening and analysis of illicit Ecstasy tablets. Rapid Communications in Mass Spectrometry, 20, 103–110. doi:10.1002/rcm.2280.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y., Shrestha, B., & Vertes, A. (2007). Atmospheric pressure molecular imaging by infrared MALDI mass spectrometry. Analytical Chemistry, 79, 523–532. doi:10.1021/ac061577n.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y., Shrestha, B., & Vertes, A. (2008). Atmospheric pressure infrared MALDI imaging mass spectrometry for plant metabolomics. Analytical Chemistry, 80, 407–420. doi:10.1021/ac701703f.

    Article  PubMed  CAS  Google Scholar 

  • Lidgard, R., & Duncan, M. W. (1995). Utility of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the analysis of low molecular weight compounds. Rapid Communications in Mass Spectrometry, 9, 128–132. doi:10.1002/rcm.1290090205.

    Article  CAS  Google Scholar 

  • MacDonald, B. F., & Prebble, K. A. (1993). Some applications of near-infrared reflectance analysis in the pharmaceutical industry. Journal of Pharmaceutical and Biomedical Analysis, 11, 1077–1085. doi:10.1016/0731-7085(93)80085-F.

    Article  PubMed  CAS  Google Scholar 

  • Maher, A. D., Zirah, S. F. M., Holmes, E., & Nicholson, J. K. (2007). Experimental and analytical variation in human urine in 1H NMR spectroscopy-based metabolic phenotyping studies. Analytical Chemistry, 79, 5204–5211. doi:10.1021/ac070212f.

    Article  PubMed  CAS  Google Scholar 

  • McCooeye, M., Ding, L., Gardner, G. J., et al. (2003). Separation and quantitation of the stereoisomers of ephedra alkaloids in natural health products using flow injection-electrospray ionization-high field asymmetric waveform ion mobility spectrometry-mass spectrometry. Analytical Chemistry, 75, 2538–2542. doi:10.1021/ac0342020.

    Article  PubMed  CAS  Google Scholar 

  • Millington, D. S., Kodo, N., Norwood, D. L., & Roe, C. R. (1990). Tandem mass spectrometry: A new method for acylcarnitine profiling with potential for neonatal screening for inborn errors of metabolism. Journal of Inherited Metabolic Disease, 13, 321–324. doi:10.1007/BF01799385.

    Article  PubMed  CAS  Google Scholar 

  • Moreira, A. B., Oliveira, H. P. M., Atvars, T. D. Z., et al. (2005). Direct determination of paracetamol in powdered pharmaceutical samples by fluorescence spectroscopy. Analytica Chimica Acta, 539, 257–261. doi:10.1016/j.aca.2005.03.012.

    Article  CAS  Google Scholar 

  • Nemes, P., & Vertes, A. (2007). Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Analytical Chemistry, 79, 8098–8106. doi:10.1021/ac071181r.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson, J. K., Connelly, J., Lindon, J. C., & Holmes, E. (2002). Metabonomics: A platform for studying drug toxicity and gene function. Nature Reviews. Drug Discovery, 1, 153. doi:10.1038/nrd728.

    Article  PubMed  CAS  Google Scholar 

  • Niessen, W. M. A. (1999). State-of-the-art in liquid chromatography-mass spectrometry. Journal of Chromatography A, 856, 179–197. doi:10.1016/S0021-9673(99)00480-X.

    Article  PubMed  CAS  Google Scholar 

  • Papac, D. I., & Shahrokh, Z. (2001). Mass spectrometry innovations in drug discovery and development. Pharmaceutical Research, 18, 131–145. doi:10.1023/A:1011049231231.

    Article  PubMed  CAS  Google Scholar 

  • Popchapsky, S. S., & Popchapsky, T. C. (2001). Nuclear magnetic resonance as a tool in drug discovery, metabolism and disposition. Current Topics in Medicinal Chemistry, 1, 427–441. doi:10.2174/1568026013394967.

    Article  Google Scholar 

  • Ratcliffe, L. V., Rutten, F. J. M., Barrett, D. A., et al. (2007). Surface analysis under ambient conditions using plasma-assisted desorption/ionization mass spectrometry. Analytical Chemistry, 79, 6094–6101. doi:10.1021/ac070109q.

    Article  PubMed  CAS  Google Scholar 

  • Reyzer, M. L., Hsieh, Y., Ng, K., Korfmacher, W. A., & Caprioli, R. M. (2003). Direct analysis of drug candidates in tissue by matrix-assisted laser desorption/ionization mass spectrometry. Journal of Mass Spectrometry, 38, 1081–1092. doi:10.1002/jms.525.

    Article  PubMed  CAS  Google Scholar 

  • Siuzdak, G. (1994). The emergence of mass spectrometry in biochemical research. Proceedings of the National Academy of Sciences of the United States of America, 91, 11290–11297. doi:10.1073/pnas.91.24.11290.

    Article  PubMed  CAS  Google Scholar 

  • Smyth, W. F., & Rodriguez, V. (2007). Recent studies of the electrospray ionisation behaviour of selected drugs and their application in capillary electrophoresis-mass spectrometry and liquid chromatography-mass spectrometry. Journal of Chromatography A, 1159, 159–174. doi:10.1016/j.chroma.2007.05.003.

    Article  PubMed  CAS  Google Scholar 

  • Strachan, C. J., Rades, T., Gordon, K. C., & Rantanen, J. (2007). Raman spectroscopy for quantitative analysis of pharmaceutical solids. The Journal of Pharmacy and Pharmacology, 59, 179–192. doi:10.1211/jpp.59.2.0005.

    Article  PubMed  CAS  Google Scholar 

  • Strauss, A. W. (2004). Tandem mass spectrometry in discovery of disorders of the metabolome. The Journal of Clinical Investigation, 113, 354–356.

    PubMed  CAS  Google Scholar 

  • Takats, Z., Cotte-Rodriguez, I., Talaty, N., Chen, H., & Cooks, R. G. (2005). Direct, trace level detection of explosives on ambient surfaces by desorption electrospray ionization mass spectrometry. Chemical Communications (Cambridge), 19501952.

  • Takats, Z., Wiseman, J. M., Gologan, B., & Cooks, R. G. (2004). Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science, 306, 471–473. doi:10.1126/science.1104404.

    Article  PubMed  CAS  Google Scholar 

  • Tan, P. V., Laiko, V. V., & Doroshenko, V. M. (2004). Atmospheric pressure MALDI with pulsed dynamic focusing for high-efficiency transmission of ions into a mass spectrometer. Analytical Chemistry, 76, 2462–2469. doi:10.1021/ac0353177.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, K., Ido, H. W. Y., Akita, S., et al. (1988). Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 2, 151–153. doi:10.1002/rcm.1290020802.

    Article  CAS  Google Scholar 

  • Tang, K., Allman, S. L., Jones, R. B., & Chen, C. H. (1993). Quantitative analysis of biopolymers by matrix-assisted laser desorption. Analytical Chemistry, 65, 2164–2166. doi:10.1021/ac00063a041.

    Article  CAS  Google Scholar 

  • Triolo, A., Altamura, M., Cardinali, F., Sisto, A., & Maggi, C. A. (2001). Mass spectrometry and combinatorial chemistry: A short outline. Journal of Mass Spectrometry, 36, 1249–1259. doi:10.1002/jms.238.

    Article  PubMed  CAS  Google Scholar 

  • Wei, J., Buriak, J. M., & Siuzdak, G. (1999). Desorption-ionization mass spectrometry on porous silicon. Nature, 399, 243–246. doi:10.1038/20400.

    Article  PubMed  CAS  Google Scholar 

  • Wei, H., Nolkrantz, K., Powell, D. H., et al. (2004). Electrospray sample deposition for matrix-assisted laser desorption/ionization (MALDI) and atmospheric pressure MALDI mass spectrometry with attomole detection limits. Rapid Communications in Mass Spectrometry, 18, 1193–1200. doi:10.1002/rcm.1458.

    Article  PubMed  CAS  Google Scholar 

  • Wilcken, B., Wiley, V., Hammond, J., & Carpenter, K. (2003). Screening newborns for inborn errors of metabolism by tandem mass spectrometry. The New England Journal of Medicine, 348, 2304–2312. doi:10.1056/NEJMoa025225.

    Article  PubMed  CAS  Google Scholar 

  • Williams, J. P., Patel, V. J., Holland, R., & Scrivens, J. H. (2006). The use of recently described ionisation techniques for the rapid analysis of some common drugs and samples of biological origin. Rapid Communications in Mass Spectrometry, 20, 1447–1456. doi:10.1002/rcm.2470.

    Article  PubMed  CAS  Google Scholar 

  • Wishart, D. S., Tzur, D., Knox, C., et al. (2007). HMDB: The human metabolome database. Nucleic Acids Research, 35, D521–D526. doi:10.1093/nar/gkl923.

    Article  PubMed  CAS  Google Scholar 

  • Wolthers, B. G., & Kraan, G. P. B. (1999). Clinical applications of gas chromatography and gas chromatography-mass spectrometry of steroids. Journal of Chromatography A, 843, 247–274. doi:10.1016/S0021-9673(99)00153-3.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to recognize the financial support from the W. M. Keck Foundation (041904), the U.S. Department of Energy (DEFG02-01ER15129), and the George Washington University Research Enhancement Fund for this work. Modified capillary inlets for the mass spectrometer were kindly provided by D. Kenny of the Waters Co.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akos Vertes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shrestha, B., Li, Y. & Vertes, A. Rapid analysis of pharmaceuticals and excreted xenobiotic and endogenous metabolites with atmospheric pressure infrared MALDI mass spectrometry. Metabolomics 4, 297–311 (2008). https://doi.org/10.1007/s11306-008-0120-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-008-0120-8

Keywords

Navigation