Skip to main content

Advertisement

Log in

Inhibition of Pichia stipitis fermentation of hydrolysates from olive tree cuttings

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The ethanolic fermentation of liquid fractions (hydrolysates) issued from dilute acid pre-treatment of olive tree biomass by Pichia stipitis is reported for the first time. On the one side, P. stipitis has been reported as the most promising naturally occurring C5 fermenting microorganism; on the other side, olive tree biomass is a renewable, low cost, and lacking of alternatives agricultural residue especially abundant in Mediterranean countries. The study was performed in two steps. First, the fermentation performance of P. stipitis was evaluated on a fermentation medium also containing the main inhibitors found in these hydrolysates (acetic acid, formic acid, and furfural), as well as glucose and xylose as carbon sources. The effect of inhibitors, individually or in a mixture, on kinetic and yield parameters was calculated. In a second step, hydrolysates obtained from 1% (w/w) sulfuric acid pre-treatment of olive tree biomass at 190°C for 10 min were used as a real fermentation medium with the same microorganism. Due to inhibition, effective fermentation required dilution of the hydrolysate and either overliming or activated charcoal treatment. Results show that ethanol yields obtained from hydrolysates, ranging from 0.35 to 0.42 g/g, are similar to those from synthetic medium, although the process proceeds at lower rates. Inhibiting compounds affect the fermentation performance in a synergistic way. Furfural is rapidly assimilated by the yeast; acetic acid and formic acid concentrations decrease slowly during the process. Activated charcoal or overliming detoxification improve the fermentability of diluted hydrolysates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agbogbo FK, Coward-Kelly G (2008) Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnol Lett 30:1515–1524. doi:10.1007/s10529-008-9728-z

    Article  CAS  Google Scholar 

  • Agbogbo FK, Wenger KS (2006) Effect of pre-treatment chemicals on xylose fermentation by Pichia stipitis. Biotechnol Lett 28:2065–2069. doi:10.1007/s10529-006-9192-6

    Article  CAS  Google Scholar 

  • Amartey S, Jeffries T (1996) An improvement in Pichia stipitis fermentation of acid-hydrolysed hemicellulose achieved by overliming (calcium hydroxide treatment) and strain adaptation. World J Microbiol Biotechnol 12:281–283. doi:10.1007/BF00360928

    Article  CAS  Google Scholar 

  • Cantarella M, Cantarella L, Gallifuoco A, Spera A, Alfani F (2004) Effect of inhibitors released during steam-explosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF. Biotechnol Prog 20:200–206. doi:10.1021/bp0257978

    Article  CAS  Google Scholar 

  • Cara C, Moya M, Ballesteros I, Negro MJ, González A, Ruiz E (2007) Influence of solid loading on enzymatic hydrolysis of steam exploded or liquid hot water pretreated olive tree biomass. Process Biochem 42:1003–1009. doi:10.1016/j.procbio.2007.03.012

    Article  CAS  Google Scholar 

  • Cara C, Ruiz E, Ballesteros M, Manzanares P, Negro MJ, Castro E (2008a) Production of fuel ethanol from steam-explosion pretreated olive tree pruning. Fuel 87:692–700. doi:10.1016/j.fuel.2007.05.008

    Article  CAS  Google Scholar 

  • Cara C, Ruiz E, Oliva JM, Sáez F, Castro E (2008b) Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification. Bioresour Technol 99:1869–1876. doi:10.1016/j.biortech.2007.03.037

    Article  CAS  Google Scholar 

  • Carvalheiro F, Duarte LC, Lopes S, Parajó JC, Pereira H, Gírio FM (2005) Evaluation of the detoxification of brewery’s spent grain hydrolysate for xylitol production by Debaryomyces hansenii CCMI 94. Process Biochem 40:1215–1223. doi:10.1016/j.procbio.2004.04.015

    Article  CAS  Google Scholar 

  • Chamy R, Núñez MJ, Lema JM (1994) Product inhibition of fermentation of xylose to ethanol by free and immobilized Pichia stipitis. Enzyme Microb Technol 16:622–626. doi:10.1016/0141-0229(94)90129-5

    Article  CAS  Google Scholar 

  • Delgenes JP, Moletta R, Navarro JM (1996) Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzyme Microb Technol 19:220–225. doi:10.1016/0141-0229(95)00237-5

    Article  CAS  Google Scholar 

  • Duarte L, Carvalheiro F, Tadeu J, Gírio FM (2006) The combined effects of acetic acid, formic acid, and hydroquinone on Debaryomyces hansenii physiology. Appl Biochem Biotechnol 129–132:461–475. doi:10.1385/ABAB:130:1:461

    Article  Google Scholar 

  • Hallborn J, Gorwa MF, Meinander N, Penttilä M, Keränen S, Hahn-Hägerdal B (1994) The influence of cosubstrate and aeration on xylitol formation by recombinant Saccharomyces cerevisiae expressing the XYL1 gene. Appl Microbiol Biotechnol 42:326–333

    CAS  Google Scholar 

  • Keating JD, Panganiban C, Mansfield SD (2006) Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnol Bioeng 93:1196–1206. doi:10.1002/bit.20838

    Article  CAS  Google Scholar 

  • Larsson S, Palmqvist E, Hahn-Hägerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant NO (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb Technol 24:151–159. doi:10.1016/S0141-0229(98)00101-X

    Article  CAS  Google Scholar 

  • Martín C, González Y, Fernández T, Thomsen AB (2006) Investigation of cellulose convertibility and ethanolic fermentation of sugarcane bagasse pretreated by wet oxidation and steam explosion. J Chem Technol Biotechnol 81:1669–1677. doi:10.1002/jctb.1586

    Article  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686. doi:10.1016/j.biortech.2004.06.025

    Article  CAS  Google Scholar 

  • Öhgren K, Bura R, Lesnicki G, Saddler J, Zacchi G (2007) A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover. Process Biochem 42:834–839. doi:10.1016/j.procbio.2007.02.003

    Article  Google Scholar 

  • Oliva JM, Sáez F, Ballesteros I, González A, Negro MJ, Manzanares P, Ballesteros M (2003) Effect of lignocellulosic degradation compounds from steam explosion pretreatment on ethanol fermentation by thermotolerant yeast Kluyveromyces marxianus. Appl Biochem Biotechnol 105–108:141–153. doi:10.1385/ABAB:105:1-3:141

    Article  Google Scholar 

  • Oliva JM, Negro MJ, Sáez F, Ballesteros I, Manzanares P, González A, Ballesteros M (2006) Effects of acetic acid, furfural and catechol combinations on ethanol fermentation of Kluyveromyces marxianus. Process Biochem 41:1223–1228. doi:10.1016/j.procbio.2005.12.003

    Article  CAS  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysatesII: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33. doi:10.1016/S0960-8524(99)00161-3

    Article  CAS  Google Scholar 

  • Palmqvist E, Grage H, Meinander NQ (1999a) Main and interaction effects of acetic acid, furfural, and p-hidroxybenzoic acid on growth and ethanol productivity of yeast. Biotechnol Bioeng 63:46–55. doi:10.1002/(SICI)1097-0290(19990405)63:1<;46::AID-BIT5>;3.0.CO;2-J

    Article  CAS  Google Scholar 

  • Palmqvist E, Almeida JS, Hahn-Hägerdal B (1999b) Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture. Biotechnol Bioeng 62:447–454. doi:10.1002/(SICI)1097-0290(19990220)62:4<;447::AID-BIT7>;3.0.CO;2-0

    Article  CAS  Google Scholar 

  • Parajó JC, Domínguez H, Domínguez JM (1998) Biotechnological production of xylitol. Part 3: Operation in culture media made from lignocellulose hydrolysates. Bioresour Technol 66:25–40. doi:10.1016/S0960-8524(98)00037-6

    Article  Google Scholar 

  • Persson J, Andersson J, Gorton L, Larsson S, Nilvebrant N, Jönsson L (2002) Effect of different forms of alkali treatment on specific fermentation inhibitors and on the fermentability of lignocellulose hydrolysates for production of fuel ethanol. J Agric Food Chem 50:5318–5325. doi:10.1021/jf025565o

    Article  CAS  Google Scholar 

  • Purwadi R, Niklasson C, Taherzadeh MJ (2004) Kinetic study of detoxification of dilute-acid hydrolyzates by Ca(OH)2. J Biotechnol 114:187–198. doi:10.1016/j.jbiotec.2004.07.006

    Article  CAS  Google Scholar 

  • Ranatunga TD, Jervis J, Helm RF, McMillan JD, Wooley RJ (2000) The effect of overliming on the toxicity of dilute acid pretreated lignocellulosics: the role of inorganics, uronic acids and ether-soluble organics. Enzyme Microb Technol 27:240–247. doi:10.1016/S0141-0229(00)00216-7

    Article  CAS  Google Scholar 

  • Romero I, Sánchez S, Moya M, Castro E, Ruiz E, Bravo V (2007a) Fermentation of olive tree pruning acid-hydrolysates by Pachysolen tannophilus. Biochem Eng J 36:108–115. doi:10.1016/j.bej.2007.02.006

    Article  CAS  Google Scholar 

  • Romero I, Moya M, Sánchez S, Ruiz E, Castro E, Bravo V (2007b) Ethanolic fermentation of phosphoric acid hydrolysates from olive tree pruning. Ind Crops Prod 25:160–168. doi:10.1016/j.indcrop.2006.08.008

    Article  CAS  Google Scholar 

  • Ruiz E, Cara C, Ballesteros M, Manzanares P, Ballesteros I, Castro E (2006) Ethanol production from pretreated olive tree wood and sunflower stalks by an SSF process. Appl Biochem Biotechnol 129–132:631–643. doi:10.1385/ABAB:130:1:631

    Article  Google Scholar 

  • Sánchez S, Bravo V, Castro E, Moya AJ, Camacho F (2002) The fermentation of mixtures of d-glucose and d-xylose by Candida shehatae, Pichia stipitis and Pachysolen tannophilus to produce ethanol. J Chem Technol Biotechnol 77:641–648. doi:10.1002/jctb.622

    Article  Google Scholar 

  • Söderström J, Galbe M, Zacchi G (2004) Effect of washing on yield in one- and two-step steam pretreatment of softwood for production of ethanol. Biotechnol Prog 20:744–749. doi:10.1021/bp034353o

    Article  Google Scholar 

  • Takahashi CM, Lima KGC, Takahashi DF, Alterthum F (2000) Fermentation of sugar cane bagasse hemicellulosic hydrolysate and sugar mixtures to ethanol by recombinant Escherichia coli KO11. World J Microbiol Biotechnol 16:829–834. doi:10.1023/A:1008987103701

    Article  CAS  Google Scholar 

  • Van Zyl C, Prior BA, du Preez JC (1991) Acetic acid inhibition of d-xylose fermentation by Pichia stipitis. Enzyme Microb Technol 13:82–86. doi:10.1016/0141-0229(91)90193-E

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially financed by Agencia Española de Cooperación Internacional para el Desarrollo (AECID) under Project ref. D/9619/07, Ministerio de Educación y Ciencia (Project ENE2005-08822) and FEDER funds. Financial support from Azucareras Reunidas de Jaén, S. A. is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eulogio Castro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz, M.J., Ruiz, E., Romero, I. et al. Inhibition of Pichia stipitis fermentation of hydrolysates from olive tree cuttings. World J Microbiol Biotechnol 25, 891–899 (2009). https://doi.org/10.1007/s11274-009-9966-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-009-9966-9

Keywords

Navigation