Skip to main content
Log in

Molecular identification of Ageratum enation virus, betasatellite and alphasatellite molecules isolated from yellow vein diseased Amaranthus cruentus in India

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Natural occurrence of yellow vein disease on Amaranthus cruentus was observed at Lucknow, India in the year 2008. The causal virus was successfully transmitted through whiteflies (Bemisia tabaci) from diseased A. cruentus to healthy seedlings of A. cruentus and other test species which indicated begomovirus infection. The begomovirus DNA-A, betasatellite, and alphasatellite components associated with yellow vein disease were amplified by rolling circle amplification using Ø-29 DNA polymerase from diseased A. cruentus and characterized by their sequence analyses. The begomovirus DNA-A genome contained six ORFs: AV2 and AV1 in virion sense and AC3, AC2, AC1, and AC4 in complementary sense strand; and a non-translated intergenic region having the conserved geminiviral nonanucleotide sequence. The virus isolate showed 97–99 % sequence identities and close phylogenetic relationships with various isolates of Ageratum enation virus (AgEV); therefore, the isolate under study was identified as AgEV. The beta- and alphasatellite molecules were also identified to be associated with the disease based on their high sequence identities and close phylogenetic relationships with the respective molecules reported worldwide. Co-infiltration of agro-infectious clones of AgEV DNA-A and its betasatellite DNA induced leaf curl and enation symptoms after 25–35 days on A. cruentus, Nicotiana benthamiana, and N. glutinosa plants. We report the association of AgEV, betasatellite and alphasatellite components with yellow vein disease of A. cruentus from India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Y. Abou-Jawdah, R. Maalouf, W. Shebaro, K. Soubra, Plant Pathol. 48, 727–734 (1999)

    Article  Google Scholar 

  2. F. Arnaud, M. Caporale, M. Varela, R. Biek, B. Chessa, A. Alberti, M. Golder, M. Mura, Y.P. Zhang, L. Yu, PLoS Pathol. 3, e170 (2007)

    Article  Google Scholar 

  3. R.W. Briddon, S.E. Bull, I. Amin, A.M. Idris, S. Mansoor, I.D. Bedford, P. Dhawan, N. Rishi, S.S. Siwatch, A.M. Abdel-Salam, J.K. Brown, Y. Zafar, P.G. Markham, Virology 312, 106–121 (2003)

    Article  PubMed  CAS  Google Scholar 

  4. R.W. Briddon, S.E. Bull, I. Amin, S. Mansoor, I.D. Bedford, N. Rishi, S.S. Siwatch, Y. Zafar, A.M. Abdel-Salam, P.G. Markham, Virology 324, 462–474 (2004)

    Article  PubMed  CAS  Google Scholar 

  5. J.K. Brown, FAO Plant Prot. Bull. 42, 3–32 (1994)

    Google Scholar 

  6. A.A. Brunt, K. Crabtree, A. Gibbs, Viruses of tropical plants (CAB International, Wallingford, 1990), p. 707

    Google Scholar 

  7. S.E. Bull, R.W. Briddon, P.G. Markham, Mol. Biotechnol. 23, 83–86 (2003)

    Article  PubMed  CAS  Google Scholar 

  8. I.B. Dry, J.E. Rigden, L.R. Krake, P.M. Mullineaux, M.A. Rezaian, J. Gen. Virol. 74, 147–151 (1993)

    Article  PubMed  CAS  Google Scholar 

  9. C.M. Fauquet, R.W. Briddon, J.K. Brown, E. Moriones, J. Stanley, M. Zerbini, X. Zhou, Arch. Virol. 153, 783–821 (2008)

    Article  PubMed  CAS  Google Scholar 

  10. P. Güerere, D.T. Chirinos, F. Geraud-Pouey, E. Moriones, M.A. Santana, M.A. Franco, I. Galindo-Castro, G. Romay, Phytoparasitica 40, 369–373 (2012)

    Article  Google Scholar 

  11. D. Haible, S. Koher, H. Jeske, J. Virol. Methods 135, 9–16 (2006)

    Article  PubMed  CAS  Google Scholar 

  12. J.E. Hernándo, J. Bermejo León, Plant Prod. Prot. 26, 93–101 (1994)

    Google Scholar 

  13. J. Horvath, Acta Phytopathol Hun. 26, 385–422 (1991)

    Google Scholar 

  14. A. Khyer-Pour, M. Bendahmane, V. Matzeit, G.P. Accotto, S. Crespi, B. Gronenborn, Nucleic Acids Res. 19, 6763–6769 (1991)

    Article  Google Scholar 

  15. Y. Kumar, P. Bhardwaj, V. Hallan, A.A. Zaidi, J. Gen. Plant Pathol. 76, 395–398 (2010)

    Article  CAS  Google Scholar 

  16. Y. Kumar, V. Hallan, A. Zaidi, J. Gen. Plant Pathol. 77, 214–216 (2011)

    Article  CAS  Google Scholar 

  17. O. Lovisolo, v (Lisa, Phytopathol Mediterr XXVII, 1976), pp. 89–93

    Google Scholar 

  18. A.S. Moffat, Science 286, 1835 (1999)

    Article  CAS  Google Scholar 

  19. N. Navot, E. Pichersky, M. Zeidan, D. Zamir, H. Czosnek, Virology 185, 151–161 (1991)

    Article  PubMed  CAS  Google Scholar 

  20. M. Padidam, R.N. Beachy, C.M. Fauquet, J. Gen. Virol. 76, 249–263 (1995)

    Article  PubMed  CAS  Google Scholar 

  21. P. Pandey, S. Mukhopadhya, A.R. Naqvi, S.K. Mukherjee, G.S. Shekhawat, N.R. Choudhury, Virol. J. 7, 337–346 (2011)

    Article  Google Scholar 

  22. S.K. Raj, S.K. Snehi, M.S. Khan, P. Chandra, R.M. Pandey, Australas. Plant Dis. Notes 3, 129–131 (2008)

    CAS  Google Scholar 

  23. S.K. Raj, S.K. Snehi, M.S. Khan, A.K. Tiwari, G.P. Rao, Phytoparasitica 39, 497–502 (2011)

    Article  Google Scholar 

  24. S.K. Raj, S.K. Snehi, M.S. Khan, A.K. Tiwari, G.P. Rao, J. Gen. Plant Pathol. 76, 292–294 (2010)

    Article  Google Scholar 

  25. K. Saunders, A. Norman, S. Gucciardo, J. Stanley, Virology 324, 37–47 (2004)

    Article  PubMed  CAS  Google Scholar 

  26. E. Segundo, D.E. Lesemann, G. Martin, M.P. Carmona, L. Ruiz, Eur. J. Plant Pathol. 117, 81–87 (2007)

    Article  CAS  Google Scholar 

  27. M.S. Shahid, L. Ali, S. Andleeb, Eur. Asia J. Bio. Sci. 3, 152–156 (2009)

    Google Scholar 

  28. R. Singh, S.K. Raj, V. Prasad, J. Phytopathol. 156, 222–228 (2008)

    Article  CAS  Google Scholar 

  29. A. Srivastava, S.K. Raj, Curr. Sci. India 87, 1126–1131 (2004)

    CAS  Google Scholar 

  30. G.E. Stallknecht, J.R. Schulz-Schaeffer, in New Crops, ed. by J. Janick, J.E. Simon (John Wiley & Sons, New York, 1993), pp. 211–221

    Google Scholar 

  31. J. Stanley, Vet. Microbiol. 98, 121–129 (2004)

    Article  PubMed  CAS  Google Scholar 

  32. S.L. Van Brunschot, D.M. Persley, A.D.W. Geering, P.R. Campbell, J.E. Thomas, Australas. Plant Path. 39, 412–423 (2010)

    Article  Google Scholar 

  33. H. Zhang, M.A. Xin-ying, Q. Ya-juan, Z. Xue-ping, Biomed. Biotech. 11, 109–114 (2010)

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Director of the CSIR-National Botanical Research Institute, Lucknow for the facilities and the Department of Biotechnology, New Delhi, India, for fellowship to Ashish Srivastava.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shri Krishana Raj.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 80 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, A., Raj, S.K., Kumar, S. et al. Molecular identification of Ageratum enation virus, betasatellite and alphasatellite molecules isolated from yellow vein diseased Amaranthus cruentus in India. Virus Genes 47, 584–590 (2013). https://doi.org/10.1007/s11262-013-0971-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-013-0971-6

Keywords

Navigation