Skip to main content
Log in

Reproductive phenology and physiological traits in the red mangrove hybrid complex (Rhizophora mangle and R. racemosa) across a natural gradient of nutrients and salinity

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Factors modulating introgressive hybridization between the red mangrove species Rhizophora mangle and R. racemosa in spatially defined sites are poorly understood. To investigate this, we evaluated the reproductive phenology and the nutrient and physiological traits in those two species and their F1 hybrids genotyped with microsatellite data across a natural hybrid zone from the Pacific coast of Panama. We found no evidence that reproductive phenology represents a barrier to gene flow, because R. mangle and the F1 hybrids produced flowers and propagules throughout the annual cycle, while R. racemosa flowered only in the dry season. Soil nutrient concentrations decreased landward, while soil salinity varied only slightly. Foliar nutrients and δ15N signatures varied according to the soil nutrient gradient, but only foliar phosphorus and carbon varied among species. In contrast, two structural variables (height and trunk diameter) and leaf variables related to salinity tolerance (Na, Cl:Na, K:Na, cation:anion) and water-use efficiency (i.e., δ13C) differed among species, suggesting higher salinity tolerance for R. mangle and F1 hybrids compared with R. racemosa. We conclude that parental species and F1 hybrids differ in salinity tolerance and water-use efficiency, which could be associated with adaptive evolution of the red mangrove hybrid complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Afzal-Rafii Z, Dodd RS, Fauvel MT (1999) A case of natural selection in Atlantic-East-Pacific Rhizophora. Hydrobiologia 413:1–9

    Article  Google Scholar 

  • Agraz-Hernández CM, García-Zaragoza C, Iriarte-Vivar S, Flores-Verdugo FJ, Casasola PM (2011) Forest structure, productivity and species phenology of mangroves in the La Mancha lagoon in the Atlantic coast of Mexico. Wetlands Ecol Manage 19:273–293. doi:10.1007/s11273-011-9216-4

    Article  Google Scholar 

  • Anderson E, Thompson E (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160:1217–1229

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arnold ML (2006) Evolution through gene exchange. Oxford University Press Inc, New York

    Google Scholar 

  • Arnold ML, Ballerini ES, Brothers AN (2012) Hybrid fitness, adaptation and evolutionary diversification: lessons learned from Louisiana Irises. Heredity 108:159–166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baack EJ, Rieseberg LH (2007) A genomic view of introgression and hybrid speciation. Curr Opin Genet Dev 17:513–518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ball MC (1988) Ecophysiology of mangroves. Trees Struct Funct 2:129–142

    Article  Google Scholar 

  • Ball MC (1996) Comparative ecophysiology of tropical lowland moist rainforest and mangrove forest. In: Mulkey SS, Chazdon RL, Smith AB (eds) Tropical forest plant physiology. Chapman & Hall, New York, pp 461–496

    Chapter  Google Scholar 

  • Ball MC, Farquhar GD (1984) Photosynthetic and stomatal responses of the grey mangrove, Avicennia marina, to transient salinity conditions. Plant Physiol 74:7–11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Breteler FJ (1969) The Atlantic species of Rhizophora. Acta Bot Neerl 18:434–444

    Google Scholar 

  • Breteler FJ (1977) America’s Pacific species of Rhizophora. Acta Bot Neerl 26:225–230

    Google Scholar 

  • Cernusak LA, Ubierna N, Winter K, Holtum JA, Marshall JD, Farquhar GD (2013) Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. New Phytol 200:950–965

    Google Scholar 

  • Cerón-Souza I, Rivera-Ocasio E, Medina E, Jimenez JA, McMillan WO, Bermingham E (2010) Hybridization and introgression in New World red mangroves, Rhizophora (Rhizophoraceae). Am J Bot 97:945–957

    Article  PubMed  Google Scholar 

  • Clough B (1984) Growth and salt balance of the mangroves Avicennia marina (Forsk.) Vierh. and Rhizophora stylosa Griff. in relation to salinity. Funct Plant Biol 11:419–430

    CAS  Google Scholar 

  • Cornejo X (2013) Lectotypification and a new status for Rhizophora x harrisonii (Rhizophoraceae), a natural hybrid between R. mangle and R. racemosa. Harv Pap Bot 18:37

  • Crawley MJ (2007) The R book. Wiley-Blackwell, Chichester

    Book  Google Scholar 

  • de Menezes MPM, de Oliveira D, de Mello CF (1997) Pollination of red mangrove, Rhizophora mangle, in Northern Brazil. Acta Horticulturae (ISHS) 437:431–434. http://www.actahort.org/books/437/437_457.htm

  • Duke NC, Allen JA (2006) Rhizophora mangle, R. samoensis, R. racemosa, R. × harrisonii (Atlantic–East Pacific red mangroves), ver. 2.1. In: Elevitch CR (ed) Species profiles for Pacific Island agroforestry. Permanent Agriculture Resources (PAR), Holualoa, Hawaii, USA

  • Duke NC, Lo EYY, Sun M (2002) Global distribution and genetic discontinuities of mangrove emerging patterns in the evolution of Rhizophora. Trees 16:65–79

    Article  Google Scholar 

  • Ellison AM, Farnsworth EJ, Twilley RR (1996) Facultative mutualism between red mangroves and root-fouling sponges in belizean mangal. Ecology 77:2431–2444

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed Central  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578. doi:10.1111/j.1471-8286.2007.01758.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fernandes MEB (1999) Phenological patterns of Rhizophora L., Avicennia L. and Laguncularia Gaertn. f. in Amazonian mangrove swamps. Hydrobiologia 413:53–62

    Article  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Fry B (2000) δ15N studies of nitrogen use by the red mangrove, Rhizophora mangle L. in South Florida. Estuar Coast Shelf Sci 50:291–296. doi:10.1006/ecss.1999.0558

    Article  CAS  Google Scholar 

  • Gill AM, Tomlinson PB (1971) Studies on the growth of red mangrove (Rhizophora mangle L.) 3. Phenology of the shoot. Biotropica 3:109–124

    Article  Google Scholar 

  • Huber SC (1985) Role of potassium in photosynthesis and respiration. In: Munson RD (ed) Potassium in agriculture. American Society of Agronomy, Madison, pp 369–396. doi:10.2134/1985.potassium.c15

  • Jiménez JA (1987) A clarification on the existence of Rhizophora species along the Pacific coast of Central America. Brenesia 28:25–32

    Google Scholar 

  • Jiménez JA (1988) Floral and fruiting phenology of trees in a mangrove forest on the dry Pacific coast of Costa Rica. Brenesia 29:33–50

    Google Scholar 

  • Kao WY, Chang KW (1998) Stable carbon isotope ratio and nutrient contents of the Kandelia candel mangrove populations of different growth forms. Bot Bull Acad Sin 39:39–45

    Google Scholar 

  • Li N, Chen S, Zhou X, Li C, Shao J, Wang R, Fritz E, Huttermann A, Polle A (2008) Effect of NaCl on photosynthesis, salt accumulation and ion compartmentation in two mangrove species, Kandelia candel and Bruguiera gymnorhiza. Aquat Bot 88:303–310. doi:10.1016/j.aquabot.2007.12.003

    Article  CAS  Google Scholar 

  • Lin GH, Sternberg LDL (1992a) Differences in morphology, carbon isotope ratios, and photosynthesis between scrub and fringe mangroves in Florida, USA. Aquat Bot 42:303–313

    Article  Google Scholar 

  • Lin GH, Sternberg LDL (1992b) Effect of growth form, salinity, nutrient and sulfide on photosynthesis, carbon isotope discrimination and growth of red mangrove (Rhizophora mangle L). Aust J Plant Physiol 19:509–517

    Article  CAS  Google Scholar 

  • Logan M (2010) Biostatistical design and analysis using R: a practical guide. Wiley-Blackwell, Chichester

    Book  Google Scholar 

  • Lopez-Hoffman L, DeNoyer JL, Monroe IE, Shaftel R, Anten NPR, Martinez-Ramos M, Ackerly DD (2006) Mangrove seedling net photosynthesis, growth, and survivorship are interactively affected by salinity and light. Biotropica 38(5):606–616

    Article  Google Scholar 

  • Lovelock CE, Feller IC (2003) Photosynthetic performance and resource utilization of two mangrove species coexisting in a hypersaline scrub forest. Oecologia 134(4):455–462

    PubMed  Google Scholar 

  • Lowry DB, Modliszewski JL, Wright KM, Wu CA, Willis JH (2008) The strength and genetic basis of reproductive isolating barriers in flowering plants. Philos Trans R Soc B 363:3009–3021

    Article  Google Scholar 

  • Mallet J (2005) Hybridization as an invasion of the genome. Trends Ecol Evol 20:229–237

    Article  PubMed  Google Scholar 

  • Martin NH, Bouck AC, Arnold ML (2005) Loci affecting long-term hybrid survivorship in Louisiana Irises: implications for reproductive isolation and introgression. Evolution 59:2116–2124. doi:10.2307/3449097

    CAS  PubMed  Google Scholar 

  • Martin NH, Bouck AC, Arnold ML (2006) Detecting adaptive trait introgression between Iris fulva and I. brevicaulis in highly selective field conditions. Genetics 172:2481–2489. doi:10.1534/genetics.105.053538

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McKee KL, Feller IC, Popp M, Wanek W (2002) Mangrove isotopic (δ15N and δ13C) fractionation across a nitrogen vs. phosphorus limitation gradient. Ecology 83:1065–1075

    Google Scholar 

  • Medina E, Francisco M (1997) Osmolality and δ13C of leaf tissues of mangrove species from environments of contrasting rainfall and salinity. Estuar Coast Shelf Sci 45:337–344

    Article  CAS  Google Scholar 

  • Medina E, Cuevas E, Popp M, Lugo AE (1990) Soil salinity, sun exposure, and growth of Acrostichum aureum, the mangrove fern. Bot Gaz 151:41–49

    Article  Google Scholar 

  • Medina E, Giarrizzo T, Menezes M, Carvalho Lira M, Carvalho EA, Peres A, Silva B, Vilhena R, Reise A, Braga FC (2001) Mangal communities of the “Salgado Paraense”: ecological heterogeneity along the Bragança peninsula assessed through soil and leaf analyses. Amazoniana 16:397–416

    Google Scholar 

  • Medina E, Francisco M, Quilice A (2008) Isotopic signatures and nutrient relations of plants inhabiting brackish wetlands in the northeastern coastal plain of Venezuela. Wetlands Ecol Manage 16:51–64

    Article  Google Scholar 

  • Mehlig U (2006) Phenology of the red mangrove, Rhizophora mangle L., in the Caete Estuary, Para, equatorial Brazil. Aquat Bot 84:158–164

    Article  Google Scholar 

  • Muller J, Caratini C (1977) Pollen of Rhizophora (Rhizophoraceae) as a guide fossil. Pollen Spores 19:361–390

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing

  • Rieseberg LH, Soltis DE (1991) Phylogenetic consequences of cytoplasmic gene flow in plants. Evolutionary Trends in Plants 5:65–84

    Google Scholar 

  • Rieseberg LH, Wendel JF (1993) Introgression and its consequences in plants. In: Harrison RG (ed) Hybrid zones and the evolutionary process. Oxford University Press, Oxford, pp 70–109

    Google Scholar 

  • Sánchez-Núñez DA, Mancera-Pineda JE (2011) Flowering patterns in three neotropical mangrove species: evidence from a Caribbean island. Aquat Bot 94:177–182. doi:10.1016/j.aquabot.2011.02.005

    Article  Google Scholar 

  • Sánchez-Núñez DA, Mancera-Pineda JE (2012) Pollination and fruit set in the main neotropical mangrove species from the Southwestern Caribbean. Aquat Bot 103:60–65. http://dx.doi.org/10.1016/j.aquabot.2012.06.004

    Google Scholar 

  • Santos-Fernandez E (2011) Johnson: Johnson Transformation. R package version 1.1. http://CRAN.R-project.org/package=Johnson

  • Savory HJ (1953) A note of the ecology of Rhizophora in Nigeria. Kew Bull 1:127–128

    Article  Google Scholar 

  • Scascitelli M, Whitney KD, Randell RA, King M, Buerkle CA, Rieseberg LH (2010) Genome scan of hybridizing sunflowers from Texas (Helianthus annuus and H. debilis) reveals asymmetric patterns of introgression and small islands of genomic differentiation. Mol Ecol 19:521–541

    Article  CAS  PubMed  Google Scholar 

  • Smith TJ III (1992) Forest structure. In: Robertson AI, Alongi DM (eds) Tropical mangrove ecosystems. American Geophysical Union, Washington DC, pp 101–136

    Chapter  Google Scholar 

  • Steffens DL, Sutter SL, Roemer SC (1993) An alternate universal forward primer for improved automated sequencing of M13. Biotechniques 15:580–582

    CAS  PubMed  Google Scholar 

  • Takayama K, Tamura M, Tateishi Y, Kajita T (2008) Isolation and characterization of microsatellite loci in the red mangrove Rhizophora mangle (Rhizophoraceae) and its related species. Conserv Genet 9:1323–1325

    Article  CAS  Google Scholar 

  • Troxler TG (2007) Patterns of phosphorus, nitrogen and δ15N along a peat development gradient in a coastal mire, Panama. J Trop Ecol 23:683–691. doi:10.1017/s0266467407004464

    Article  Google Scholar 

  • Turner BL, Romero TE (2009) Short-term changes in extractable inorganic nutrients during storage of tropical rain forest soils. Soil Sci Soc Am J 73:1972–1979

    Article  CAS  Google Scholar 

  • Whitney KD, Randell RA, Rieseberg LH (2006) Adaptive introgression of herbivore resistance traits in the weedy sunflower Helianthus annuus. Am Nat 167:794–807

    Article  PubMed  Google Scholar 

  • Whitney KD, Randell RA, Rieseberg LH (2010) Adaptive introgression of abiotic tolerance traits in the sunflower Helianthus annuus. New Phytol 187:230–239

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the BBVA Foundation in Spain, Secretaria Nacional de Ciencia, Tecnología e Innovación—SENACYT (FID-0927) and Smithsonian Tropical Research Institute—STRI in Panama. The authors thank to Autoridad Nacional del Ambiente—ANAM in Panama for study permits and logistic support in the province of Anton-Cocle; J. Chavarría, G. Jaramillo, G.J. Jaramillo, L. Jaramillo, S. Martínez and L. Rodríguez for field assistance; D. Agudo for laboratory support; J. Touchon and S. Dennis for their suggestions in the statistical analysis and L. Santiago for his comments to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivania Cerón-Souza.

Additional information

Communicated by Siegy Krauss.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1. Bayesian analysis using STRUCTURE software (PDF 104 kb)

11258_2014_315_MOESM2_ESM.pdf

Online Resource 2. The general linear model analysis of 14 soil variables in an intertidal zone of the Pacific coast of Panama where 90 Rhizophora individuals were distributed in a spatial zonation (PDF 133 kb)

Online Resource 3. Mean values of the analysis of variance for soil variables (PDF 114 kb)

11258_2014_315_MOESM4_ESM.pdf

Online Resource 4. The general linear model analysis of 19 foliar variables and two structural variables (i.e., DBH and Height) in 90 Rhizophora individuals from the Pacific coast of Panama (PDF 133 kb)

Online Resource 5. Mean values of the analysis of variance for leaf variables (PDF 130 kb)

Online Resource 6. Linear correlation analysis of soil nutrients and leaf variables (PDF 110 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerón-Souza, I., Turner, B.L., Winter, K. et al. Reproductive phenology and physiological traits in the red mangrove hybrid complex (Rhizophora mangle and R. racemosa) across a natural gradient of nutrients and salinity. Plant Ecol 215, 481–493 (2014). https://doi.org/10.1007/s11258-014-0315-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-014-0315-1

Keywords

Navigation