Skip to main content
Log in

Litter decomposition promotes differential feedbacks in an oligotrophic southern Everglades wetland

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The differential accumulation or loss of carbon and nutrients during decomposition can promote differentiation of wetland ecosystems, and contribute to landscape-scale heterogeneity. Tree islands are important ecosystems because they increase ecological heterogeneity in the Everglades landscape and in many tropical landscapes. Only slight differences in elevation due to peat accumulation allow the differentiation of these systems from the adjacent marsh. Hydrologic restoration of the Everglades landscape is currently underway, and increased nutrient supply that could occur with reintroduction of freshwater flow may alter these differentiation processes. In this study, we established a landscape-scale, ecosystem-level experiment to examine litter decomposition responses to increased freshwater flow in nine tree islands and adjacent marsh sites in the southern Everglades. We utilized a standard litterbag technique to quantify changes in mass loss, decay rates, and phosphorus (P), nitrogen (N) and carbon (C) dynamics of a common litter type, cocoplum (Chrysobalanus icaco L.) leaf litter over 64 weeks. Average C. icaco leaf degradation rates in tree islands were among the lowest reported for wetland ecosystems (0.23 ± 0.03 yr−1). We found lower mass loss and decay rates but higher absolute mass C, N, and P in tree islands as compared to marsh ecosystems after 64 weeks. With increased freshwater flow, we found generally greater mass loss and significantly higher P concentrations in decomposing leaf litter of tree island and marsh sites. Overall, litter accumulated N and P when decomposing in tree islands, and released P when decomposing in the marsh. However, under conditions of increased freshwater flow, tree islands accumulated more P while the marsh accumulated P rather than mineralizing P. In tree islands, water level explained significant variation in P concentration and N:P molar ratio in leaf tissue. Absolute P mass increased strongly with total P load in tree islands (r 2 = 0.81). In the marsh, we found strong, positive relationships with flow rate. Simultaneous C and P accumulation in tree island and mineralization in adjacent marsh ecosystems via leaf litter decomposition promotes landscape differentiation in this oligotrophic Everglades wetland. However, results of this study suggest that variation in flow rates, water levels and TP loads can shift differential P accumulation and loss leading to unidirectional processes among heterogeneous wetland ecosystems. Under sustained high P loading that could occur with increased freshwater flow, tree islands may shift to litter mineralization, further degrading landscape heterogeneity in this system, and signaling an altered ecosystem state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Almquist-Jacobson H, Foster DR (1995) Toward an integrated model for raised-bog development: theory and field evidence. Ecology 76:2503–2516

    Article  Google Scholar 

  • Anderson RL, Foster DR, Motzkin G (2003) Integrating lateral expansion into models of peatland development in temperate New England. J Ecol 91:68–76

    Article  Google Scholar 

  • Ardon M, Stallcup LA, Pringle CM (2006) Does leaf quality mediate the stimulation of leaf breakdown by phosphorus in Neotropical streams? Freshw Biol 51:618–633

    Article  CAS  Google Scholar 

  • Baker TT, Lockaby BG, Conner WH, Meier CE, Stanturf JA, Burke M (2001) Leaf litter decomposition and nutrient dynamics in four southern forested floodplain communities. Soil Sci Soc Am J 65:1334–1347

    Article  CAS  Google Scholar 

  • Bauer IE (2004) Modelling effects of litter quality and environment on peat accumulation over different time-scales. J Ecol 92:661–674

    Article  Google Scholar 

  • Belyea LR, Baird AJ (2006) Beyond “the limits to peat bog growth”: cross-scale feedback in peatland development. Ecol Monogr 76:299–322

    Article  Google Scholar 

  • Bragazza L, Gerdol R (2002) Are nutrient availability and acidity-alkalinity gradients related in Sphagnum-dominated peatlands? J Veg Sci 13:473–482

    Article  Google Scholar 

  • Bridgham SD, Richardson CJ (1993) Hydrology and nutrient gradients in North Carolina peatlands. Wetlands 13:207–218

    Google Scholar 

  • Brinson MM, Lugo AE, Brown S (1981) Primary productivity, decomposition and consumer activity in freshwater wetlands. Annu Rev Ecol Syst 12:123–161

    Article  Google Scholar 

  • Clarkson BR, Schipper LA, Moyersoen B, Silvester WB (2005) Foliar 15N natural abundance indicates phosphorus limitation of bog species. Oecologia 144:550–557

    Article  PubMed  Google Scholar 

  • Corstanje R, Reddy KR, Portier KM (2005) Typha latifolia and Cladium jamaicense litter decay in response to exogenous nutrient enrichment. Aquat Bot 84:70–78

    Article  Google Scholar 

  • Couwenberg J, Joosten H (2005) Self-organization in raised bog patterning: the origin of microtope zonation and mesotope diversity. J Ecol 93:1238–1248

    Article  Google Scholar 

  • Craft CB, Richardson CJ (1993) Peat accretion and N, P, and organic C accumulation in nutrient-enriched and unenriched Everglades peatlands. Ecol Appl 3:446–458

    Article  Google Scholar 

  • Davis SE, Coronado-Molina C, Childers DL, Day JW (2003) Temporally dependent C, N, and P dynamics with the decay of Rhizophora mangle L. Leaf litter in oligotrophic mangrove wetlands of the Southern Everglades. Aquat Bot 75:199–215

    Article  CAS  Google Scholar 

  • Debusk WF, Reddy KR (2005) Litter decomposition and nutrient dynamics in a phosphorus enriched Everglades marsh. Biogeochemistry 75:217–240

    Article  Google Scholar 

  • Ellery W, McCarthy T, Dangerfield J (1998) Biotic factors in Mima mound development: evidence from the floodplains of the Okavango Delta, Botswana. Int J Ecol Environ Sci 24:293–313

    Google Scholar 

  • Florida Coastal Everglades (FCE) LTER (2006) FCE LTER database. http://fcelter.fiu.edu/data/contents/. Cited 10 Oct 2006

  • Glaser PH, Janssens JA (1986) Raised bogs in eastern North America: transitions in landforms and gross stratigraphy. Can J Bot 64:395–415

    Article  Google Scholar 

  • Hogg EH, Lieffers VJ, Wein RW (1992) Potential carbon losses from peat profiles: effects of temperature, drought cycles, and fire. Ecol Appl 2:298–306

    Article  Google Scholar 

  • Kuehn KA, Lemke MJ, Suberkropp K, Wetzel RG (2000) Microbial biomass and production associated with decaying leaf litter of the emergent macrophyte Juncus effusus. Limnol Oceanogr 45:862–870

    Article  CAS  Google Scholar 

  • Langstroth RP (1996) Forest islands in an Amazonian Savanna of Northeastern Bolivia. Ph.D. dissertation, University of Wisconsin, Madison, WI

  • Lepori F, Palm D, Malmquist B (2005) Effects of stream restoration on ecosystem functioning: detritus retentiveness and decomposition. J Appl Ecol 42:228–238

    Article  Google Scholar 

  • Light SS, Dineen JW (1994) Water control in the Everglades: a historical perspective. In: Davis SM, Ogden JC (eds) Everglades: the ecosystem and its restoration. St. Lucie Press, Delray Beach, pp 47–87

    Google Scholar 

  • Middleton BA, McKee KL (2001) Degradiation of mangrove tissues and implications for peat formation in Belizean island forests. J Ecol 89:818–828

    Article  Google Scholar 

  • Newman S, Kumpf H, Laing JA, Kennedy WC (2001) Decomposition responses to phosphorus enrichment in an Everglades slough. Biogeochemistry 54:229–250

    Article  CAS  Google Scholar 

  • Noe GB, Childers DL, Jones RD (2001) Phosphorus biogeochemistry and the impact of phosphorus enrichment: why is the Everglades so unique? Ecosystems 4:603–624

    Article  CAS  Google Scholar 

  • Nungesser MK (2003) Modelling microtopography in boreal peatlands: hummocks and hollows. Ecol Modell 165:175–207

    Article  Google Scholar 

  • Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–344

    Article  Google Scholar 

  • Pastor J, Beckham B, Bridgham S, Weltzin J, Chen J (2002) Plant community dynamics, nutrient cycling and alternative stable equilibria in peatlands. Am Nat 160:554–568

    Article  Google Scholar 

  • Ponce V, Cunha C (1993) Vegetated earthmounds in tropical savannas of Central Brazil: a synthesis with special reference to the Pantanal do Mato Grosso. J Biogeogr 20:219–225

    Article  Google Scholar 

  • Qualls RG, Richardson CJ (2000) Phosphorus enrichment affects litter decomposition, immobilization, and soil microbial phosphorus in wetland mesocosms. Soil Sci Soc Am J 64:799–808

    Article  CAS  Google Scholar 

  • Rietkerk M, Dekker SC, Wassen MJ, Verkroost AWM, Bierkens MFP (2004) A putative mechanism for bog patterning. Am Nat 163:699–708

    Article  PubMed  CAS  Google Scholar 

  • Rubio G, Childers DL (2006) Controls on herbaceous litter decomposition in the estuarine ecotones of the Florida Everglades. Estuaries Coasts 29:259–270

    Google Scholar 

  • Seastedt T, Adams G (2001) Effects of mobile tree islands on alpine tundra soils. Ecology 82:8–17

    Google Scholar 

  • Sinsabaugh RL, Moorehead DL (1994) Resource allocation to extracellular enzyme production: a model for nitrogen and phosphorus control of litter decomposition. Soil Biol Biochem 26:1305–1311

    Article  Google Scholar 

  • Sklar F, van der Valk A (2002) Tree islands of the Everglades. Kluwer Academic Publishers, Boston

    Google Scholar 

  • Solorzano L, Sharp J (1980) Determination of total dissolved P and particulate P in natural waters. Limnol Oceanogr 25:754–758

    Article  CAS  Google Scholar 

  • Thormann MN, Bayley SE (1997) Decomposition along a moderate-rich fen-marsh peatland gradient in boreal Alberta, Canada. Wetlands 17:123–137

    Google Scholar 

  • Troxler TG (2007) Patterns of phosphorus, nitrogen and 15N along a peat development gradient in a coastal mire, Panama. J Trop Ecol 23:683–691

    Article  Google Scholar 

  • Troxler Gann TG, Childers DL (2006) Relationships between hydrology and soils describe vegetation patterns in seasonally flooded tree islands of the southern Everglades, Florida. Plant Soil 279:273–288

    Google Scholar 

  • Troxler Gann TG, Childers DL, Rondeau DN (2005) Ecosystem structure, nutrient dynamics, and hydrologic relationships in tree islands of the southern Everglades, Florida, USA. For Ecol Manage 214:11–27

    Article  Google Scholar 

  • Twilley RR, Pozo M, Garcia VH, Rivera-Monroy VH, Zambrano R, Bodero A (1997) Litter dynamics in riverine mangrove forests in the Guayas River estuary, Ecuador. Oecologia 111:109–122

    Article  Google Scholar 

  • Villar CA, de Cabo AL, Vaithiyanathan P, Bonetto C (2001) Litter decomposition of emergent macrophytes in a floodplain marsh of the lower Paraná River. Aquat Bot 70:105–116

    Article  Google Scholar 

  • Webster JR, Benfield EF (1986) Vascular plant breakdown in freshwater ecosystems. Annu Rev Ecol Syst 17:567–594

    Article  Google Scholar 

  • Wetzel RG (1991) Extracellular enzymatic interactions: storage, redistribution, and interspecific communication. In: Chróst RJ (ed) Microbial enzymes in aquatic environments. Springer-Verlag, New York, pp 6–28

    Google Scholar 

  • Wetzel PR, van der Valk AG, Newman S, Gawlik DE, Troxler Gann T, Coronado-Molina CA, Childers DL, Sklar FH (2005) Nutrient redistribution key to maintaining tree islands in the Florida Everglades. Front Ecol Environ 3:370–376

    Article  Google Scholar 

  • Zar J (1999) Biostatistical analysis, 4th edn. Prentice Hall, Upper Sadle River

    Google Scholar 

Download references

Acknowledgments

We would like to thank the Wetland Ecosystems Ecology group for field and lab support, as well as critical reviews that greatly improved this manuscript. Critical to the accomplishment of this work were Damon Rondeau and undergraduate research assistants Josh Mahoney and Simone Normile. This research was partially supported by the South Florida Water Management District under several sequential contracts, and by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research Program (DEB-9901514).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiffany G. Troxler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Troxler, T.G., Childers, D.L. Litter decomposition promotes differential feedbacks in an oligotrophic southern Everglades wetland. Plant Ecol 200, 69–82 (2009). https://doi.org/10.1007/s11258-008-9405-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-008-9405-2

Keywords

Navigation